
Adaptive Information Density for Augmented Reality Displays
Markus Tatzgern∗

Salzburg University of Applied Sciences
Valeria Orso†

University of Padova
Denis Kalkofen‡

Graz University of Technology
Giulio Jacucci§

University of Helsinki

Luciano Gamberini¶

University of Padova
Dieter Schmalstieg‖

Graz University of Technology

(a) (b)

Figure 1: (a) A user looking for a book to read can use the glyph visualization to compare items and identify interesting books. However, finding
the real world location of books is difficult because of the clutter. (b) With an adaptive information density display, the user has a better overview
of relevant books.

ABSTRACT

Augmented Reality (AR) browsers show geo-referenced data in the
current view of a user. When the amount of data grows too large,
the display quickly becomes cluttered. Clustering items by spa-
tial and semantic attributes can temporarily alleviate the issue, but
is not effective against an increasing amount of data. We present
an adaptive information density display for AR that balances the
amount of presented information against the potential clutter cre-
ated by placing items on the screen. We use hierarchical clustering
to create a level-of-detail structure, in which nodes closer to the
root encompass groups of items, while the leaf nodes contain sin-
gle items. Our method selects items and groups from different lev-
els of this hierarchy based on user-defined preferences and on the
amount of visual clutter caused by placing these items. The num-
ber of presented items is adapted during user interaction to avoid
clutter. We compare our interface to a conventional AR browser
interface in a qualitative user study. Users clearly preferred our
interface, because it provided a better overview of the data and al-
lowed for easier comparison. In a second study, we evaluated the
effect of different degrees of clustering on search and recall tasks.
Users generally made fewer errors, when using our interface for a
search task, which indicates that the reduced clutter allowed them
to stay focused on finding the relevant items.

∗e-mail: markus.tatzgern@fh-salzburg.ac.at
†e-mail: valeria.orso@studenti.unipd.it
‡e-mail: kalkofen@icg.tugraz.at
§e-mail: giulio.jacucci@cs.helsinki.fi
¶e-mail: luciano.gamberini@unipd.it
‖e-mail: schmalstieg@icg.tugraz.at

1 INTRODUCTION

Augmented Reality (AR) browsers on mobile devices overlay geo-
referenced data points directly on top of live video. A data point –
or point of interest – is a three-dimensional location associated with
additional information such as a textual description. Users of AR
browsers not only relate items to their real world location, but can
also take into account the immediate surroundings of the item. For
instance, a user might identify a suitable apartement based on the
provided data. However, the user notices trees in front of the aparte-
ment that block the light during the day and, therefore, removes the
apartement from the list of candidates. This also underlines the
benefit of AR of investigating data directly in a real world context.
While a map provides a spatial reference frame, the AR view also
provides ego-centric contextual information. However, when the
number of data items in the field of view is large, the AR display
becomes cluttered, and the user has difficulties finding relevant in-
formation (see Figure 1(a)).

Azuma et al. [1] refer to this as the problem of data density and
offer two solutions. First, the amount of data can be reduced by fil-
tering techniques. Second, view management can rearrange the data
to create a more effective presentation. However, view management
approaches must fail, if the amount of data grows too large. There-
fore, effective filtering of the data to a sensible amount is essential
for any AR browser.

A common filtering method is spatial filtering, where data points
beyond a certain distance are discarded. However, this can lead to
information loss, if information which is relevant to a user is re-
moved [19]. Knowledge-based (or semantic) filtering amends this
problem by selecting data based on user preferences, rather than
by spatial criteria alone, and, thus, presents only relevant data [9].
However, there is no guarantee that the amount of data is suffi-
ciently reduced to prevent clutter.

Ideally, the amount of data is reduced to an acceptable density
without losing any relevant information. To this aim, we propose

(a)

unfold

unfoldedmoved

(b)

Figure 2: Naive spatial clustering helps only temporarily. (a) The user’s display has an acceptable amount of clutter, but the user unfolds an item.
(b) The display becomes overloaded.

to aggregate related data points by clustering, rather than remov-
ing data with a filter (see Figure 1(b)). Clustering has the advan-
tage over filtering that the complete information space is preserved.
State-of-the-art AR browsers1 cluster data points by spatial proxim-
ity in 2D image space to reduce visual clutter by showing only rep-
resentatives of the grouped items. To avoid visual clutter for a large
data set, the clusters must contain a large number of items. Un-
folding such clusters during interaction with the data re-introduces
clutter (see Figure 2).

We address this issue by creating an information hierarchy,
which is conceptually similar to semantic level of detail [8]. By
recursively applying clustering, an information hierarchy is built.
Our clustering approach not only considers user-controlled spatial
attributes (e.g., distance), but also non-spatial attributes (e.g., se-
mantic tags). The sum of these user-weighted attributes provides a
ranking of the data, which expresses its relevance to the user. To
avoid visual clutter, a display algorithm shows data which is rel-
evant for the user in more detail, while it always adapts the over-
all amount of information to the available image space. It does so
by solving an incremental optimization problem, deciding which
nodes in the hierarchy are selected for display. Users can dynam-
ically adjust priorities to interactively drill down on data deemed
relevant, and reveal all available details on demand.

Generally, application cases for the presented method include
exploratory search tasks, in which a user wants to get an overview
of the available data, before making an informed decision. For
instance, various shopping scenarios involve this kind of task. A
customer in a video or music store would like to browse the avail-
able selection based on preferences, without removing any items
beforehand. A parent may want to look for toys in a shop based
on the preferences of the child. In a food store, a customer, who
is unsure about the upcoming dinner, states food preferences and
chooses accordingly. A researcher in a university library looks for
related work.

To the best of our knowledge, this paper presents the first view
management system which uses adaptive clustering rather than fil-
tering, yielding the following improvements over previous work:

• Our approach condenses information rather than discarding it;
all data remains directly accessible.

• Clutter is reliably avoided, since per-frame optimization sup-
presses excessive data density.

• User-controlled combination of both spatial and semantic cri-
teria for clustering with priorities yields a ranked selection of
data points.

1https://help.here.com/de/wp8/citylens

• Adaptive selection of the data which is most relevant for the
user is possible with both implicit interaction (free viewpoint
exploration) and explicit interaction (data point selection for
drill-down).

• Our technique can work with both view-dependent and view-
independent attributes, and ensures suitable temporal coher-
ence in both cases.

Thus our system is the first first-person AR system that combines
the advantages of ranked search and free viewpoint exploration.

2 RELATED WORK

The two most common techniques that are used to reduce visual
clutter are filtering and clustering. While filters completely re-
move items from the presentation, clustering algorithms group them
based on a given distance function that expresses the similarity of
items.

2.1 Filtering
In AR, augmentations can be filtered by spatial or semantic criteria.
A spatial filter is often implemented as a magic lens [4, 15], which
filters information in screen or object space. Spatial filters typically
require an undesirable amount of user interaction to investigate the
data in its entirety. In addition, such spatial filters only work locally
in a small region and, therefore, do no create overviews of the input
data, which provide a general picture of the overall available data.
In contrast, the approach presented in this paper permits the user to
explore details and, simultaneously, provides a general overview.

Feiner et al. [9] present a knowledge-based filter, which filters in-
formation based on knowledge about the user’s task. For instance,
such a filter can show the current step in a sequence of assembly
operations based on the status of the overall assembly. Knowledge-
based filters are the logical choice for showing sequences, but can
also be used to visualize larger data sets. For this purpose, a degree-
of-interest function can be defined that filters data based on priori-
ties set by the user [10]. We take a similar approach by classifying
data based on an interest function. However, int our approach, data
that is not relevant to the user is not lost completely, but aggregated
into an abstract representation.

Location-based services often combine spatial and knowledge-
based filters [21]. Julier et al. [12] present such a combined filter
for AR. Each data item has a spatial location and a surrounding
region of interest, which is scaled based on these priorities. Only
when the user enters a region of interest, the data is presented. More
interesting items have a larger region of interest and, therefore, ap-
pear earlier in the AR view. This approach can still lead to visual
clutter, when the user enters the region of interest of a large number
of items. Our approach always controls the amount of clutter.

Figure 3: System overview. Our information density display follows the information visualization pipeline. In the data transformation step, the
input data is clustered to create a hierarchical representation of the data. The data items of the hierarchy are encoded as glyphs. The user can
influence each step explicitly via the user interface (blue line) or implicitly by changing the viewpoint and manipulating the glyphs directly (orange
line).

2.2 View management

View management algorithms automatically arrange augmentations
on the screen, so that they avoid overlaps between each other and
the world. With an increasing number of augmentations, it becomes
harder for view management algorithms to arrange the items on the
screen. Maass et al. [13] and Bell et al. [3] handle overload in view
management by omitting excessive annotations. Maass et al. [13]
derive importance from depth values and can choose to omit labels
beyond a certain distance. However, this approach is not temporally
stable during camera movements. Bell et al. [3] filter annotations
based on the visibility of the referred elements and a user-defined
importance value. Their algorithm arranges annotations with the
highest priority first and stops adding annotations, when layout con-
straints would be violated. This approach results in more stable lay-
outs, but does not scale to large data sets. In contrast, our approach
makes sure that all relevant information is preserved.

2.3 Clustering

In information visualization, hierarchical clustering can be used to
reduce the visual complexity, e.g., of graph visualizations [2, 11].
Such aggregations require visual abstractions that present the data
at an appropriate semantic level of detail.

Tatzgern et al. [18, 19, 20] present a combined filter and layout
approach that filters data based on redundancies to reduce visual
clutter. First, data is clustered by similarity. A selection algorithm
selects only representative items from redundant clusters. This ap-
proach can only avoid clutter, when there are redundancies to ex-
ploit, and is not sensitive to the amount of used screen space. Our
work uses clustering from semantic attributes and respects the de-
sired screen space density.

Our approach is inspired by constant density information dis-
plays for map visualization. Such displays fill the available screen
space with a constant amount of information, even during zooming.
Woodruff et al. [24] use a regular grid in screen space as a measure
of local clutter, but do not address temporal coherence. Dix and El-
lis [6] use random sampling to select data items, such that their lo-
cations are also balanced over the available screen-space. However,
this approach selects different items in every run. Both approaches
filter by removing data from the set. Our approach fills the screen
with items representing a cut through a cluster hierarchy. We dy-
namically fill the screen with items, while avoiding clutter locally
around an item. Because we avoid a grid or similar quantization,
we naturally achieve temporal coherence of the visualization.

3 OVERVIEW

Our AR browser lets users query geo-referenced data about their
surroundings, such as restaurant information or real estate offers,
from online databases such as Google Places2. The data points are
visualized as annotations in an AR view. A typical use situation will
involve several hundreds or thousands of data points, more than
can be presented in full on the screen, making view management
necessary.

Visualization for AR browsers has similar requirements as in
classic information visualization, which involves the three main
stages of the information visualization pipeline [5]: data transfor-
mation, visual mapping and view transformation (see Figure 3).

In the data transformation stage, a cluster is created from the
data points. The clustering is based on similarity among the data
points’ attributes. Each attribute has a user-defined weight.

In the visual mapping stage, every cluster point is transformed
into a glyph showing a summary of the most important attributes.

In the view transformation stage, a 2D display is generated
from a selection of cluster points. The selection is based on the
user’s current 3D viewpoint and the user’s interactive selections.
The user can change the selection interactively by setting desired
values for each attribute or by explicitly unfolding parts of the clus-
ter hierarchy (with a tapping on the items on the screen). The se-
lection is dynamically computed to best match the user’s expressed
interest, while respecting a maximum point density on the screen.

In the following sections, our approach is discussed in more de-
tail.

4 HIERARCHICAL CLUSTERING

In the data transformation stage, a hierarchy of clusters is computed
based on similarity of data points. A flat partitioning would require
knowing the number of clusters in advance and cannot reflect the
structure of the data well [14, p.377]. Instead, by using a cluster
hierarchy, the view management can later decide for every frame at
which level the hierarchy should be cut and, therefore, how many
clusters should be presented.

We consider a set of data points D = {Di}, each with a set of
attributes A. We denote the attribute set of Di as Ai = {Ai, j}. Each
attribute can have an arbitrary data type, describing aspects such as
user satisfaction rating, social tags or pricing. Two attribute values
Ai, j and Ai′, j of the same type T can be compared with with a com-
parison function c f j : T×T→ [0,1], which yields 1 if two values
are identical, and 0 if two values are most dissimilar.

2https://developers.google.com/places/

The user expresses the desired information by setting desired
values U = {U j} and weights w j for each attribute (∑w j = 1). A
weight of 0 indicates that the user does not care about a particu-
lar attribute; in this case, the desired value for this attribute can
be arbitrary. With the comparison functions, we can compute the
similarity S : A×A→ [0,1] of two attribute sets as the weighted
per-attribute difference:

S(Ai,Ai′) = ∑
j

w j · c f j(Ai, j,Ai′, j) (1)

Once the user has set weights and desired values, the clustering al-
gorithm can be started. We use top-down divisive k-means clus-
tering to create our hierarchical cluster tree composed of nodes
N = {Ni}. All data points initially form a cluster that corresponds
to the root of the tree. We recursively perform k-means on the root,
until the leaves of the tree correspond to the smallest possible clus-
ter containing only one item, i. e., D⊆ N.
K-means creates clusters based on the similarity function S. We
define the branching factor of the tree by choosing a number of
clusters for each iteration of k-means. For our experiments, we set
this factor to four.

Both position Pi in world space and position pi, the projection of
Pi to screen space using the current camera position, may, but need
not be used as attributes. Using only Pi as an attribute and the Eu-
clidean distance (either in 3D or just geographic longitude/latitude)
as the comparison function will result in a conventional POI clus-
tering based on geographic proximity. Such a clustering is view-
independent, i. e., computed in world space and not in screen space.
This has the advantage of a temporally coherent view management.

World-space position Pi can easily be combined with other at-
tributes using appropriate weights. Consider a user searching for
restaurants. The type of cuisine (Italian, French, Chinese) may be
given a high weight. In this case, restaurants with the same cuisine
may be clustered first, even if they are not lying closely together.
However, restaurants that are very far apart will not be clustered,
even though they offer the same cuisine. Setting the weights appro-
priately allows the user to balance her needs or preferences.

The world-space position of an intermediate node is computed
as the centroid of the children’s positions. When computing in-
termediate notes, we found it useful to decrease the weight of Pi
proportional to the graph distance of a given Ni from its leaves.
In this way, position has a stronger influence on clustering in the
lower, more ”concrete” layers of the tree, but similarity of semantic
attributes has a stronger influence in the upper, more ”abstract” lay-
ers of the tree. This means that objects from the lower layers will
be projected onto close-by point in screen space. Replacing these
points with their centroid only minimally changes their placement
on the screen and, thus, retains good spatial accuracy. Intermedi-
ate nodes from high layers may be placed further from the natu-
ral screen-space position of the represented leaves. However, node
from high layers represent more abstract information with a general
indication of direction, such as ”all Italian restaurants to the west”.

The comparison function may involve operations that depend on
a user’s situation and are, thus, subject to change as time and space
change. For example, we can use a mean or maximum value for
normalizing a certain attribute, making the comparison function de-
pendent on the current database population. We may also consider
a routing algorithm that determines the time to walk or drive to
each destination from the user’s current position. Such estimates
may become increasingly wrong over time. For such time-varying
attributes, we trigger re-computation at certain intervals, for exam-
ple, every few seconds, or if the user has moved a certain distance.

5 OPTIMAL LABEL SELECTION

In the following, we describe the view transformation stage of our
approach to balance the available screen-space against visualizing

(a)

(b)

Figure 4: Selection from the cluster hierarchy. (a) A greedy best-first
search creates a a cut through the tree (blue line). Nodes below the
cut, shaded in green, are placed on the screen. (b) The cut must
either place all children or no child on the screen. The orange cut is
invalid, because the predecessor (P) of two nodes (C) is included.

relevant data to the user. The system must also handle viewpoint
changes in a temporally coherent way. A view management algo-
rithm makes sure that any interfering data items are rearranged.

5.1 Initial label selection
We want to select a set of labels L= {Lk} representing a cut through
the cluster tree, so that all data points have some representative. We
write children(i) for the set of all direct children of Ni, children∗(i)
for the set of all direct and indirect children of Ni (including Ni
itself), and leaves(i) = {x|x ∈ children∗(i)∧ x ∈ D}. Using these
definitions, we can describe the set of all possible cuts as follows
(see Figure 4):

cut(N) = {{L} | L⊆ N ∧Lk 6⊆ children(L′k) ∀ (Lk,L
′
k) ∈ L ∧

(∃ Lk ∈ L | Di ∈ children∗(Lk) ∀ Di ∈ D)}
(2)

With these considerations, we can select a suitable L ∈ cut(N) for
a given user position. By introducing a cost and benefit metric,
we can interpret the label selection problem as a constrained opti-
mization problem. It tries to fill the screen with the most beneficial
labels, by optimizing a benefit function B(k)

max
L∈cut(N)

∑
Lk∈L

B(k) (3)

while avoiding excessive clutter by respecting a maximum cost
C(k)

C(k)≤Cmax ∀ Lk (4)

The benefit of a leaf Di is given by its similarity to U, i. e., S(Ai,U).
The benefit of an intermediate node depends how well it can rep-
resent its leaves. We account for this fact by weighting the ben-
efit with the label’s spatial displacement in screen space, wP, and
the semantic similarity of the data points represented by the label,

Figure 5: To measure the visual clutter of a data item, we consider
a region with radius α around the item (red circle). The blue and
the yellow node fall within the radius of the green node. The cost
for placing blue is smaller, because it is farther away from the green
node and produces less clutter.

wS. The spatial displacement wP gives more benefit to intermedi-
ate nodes, which are close to their data points, expressed as relative
inverse distance:

wP(k,k′) =
1

1+ ||pk− pk′ ||
(5)

The semantic similarity wS gives higher benefit to an intermediate
node representing homogeneous data points, which have a high av-
erage similarity S:

wS(k) =
2 ·∑(Li,Li′)∈leaves(k),i 6=i′ S(Ai,Ai′)

|leaves(k)| · (|leaves(k)|+1)
(6)

We combine these terms in a recursive definition of a benefit metric
B(k):

B(k) =

{
S(Ak,U), ∀Dk ∈ D
wS(k) ·∑Lk′∈leaves(k)(B(k

′) ·wP(k,k′)), otherwise
(7)

The cost of including a node Nk in L is related to the clutter it
produces. Using wP, we can express the clutter as local density
of other labels in a neighborhood of radius α around a node (see
Figure 5):

C(k) = ∑
Nk′∈L, |pk−pk′ |<α

wP(k,k′) (8)

This optimization problem can be approximated with a greedy
best-first search (BFS) [16]. It starts with the root of the cluster tree
and keeps propagating the cut through the tree towards the leaves,
by unfolding an intermediate node Lk /∈ D, i. e., replacing Lk with
its children. The unfolding operation changes the relative benefit
Ru(k):

Ru(k) =

 ∑
Lk′∈children(Lk)

B(k′)
C(k′)

− B(k)
C(k)

(9)

The Ru(k) are kept sorted in a joint queue with decreasing order.
In every step, the node with the highest relative benefit is chosen,
provided it is eligible, i. e., C(k′) ≤Cmax ∀ Lk′ ∈ children(Lk) for
unfolding. This process terminates, if no more improvements can
be found.
Greedy BFS quickly converges towards a useful result, but can get
stuck in a local minimum. We therefore refine the BFS result with a
random search approach based on threshold accepting [7]. Thresh-
old accepting applies small random changes to the solution and
temporarily accepts solutions that are worse than the current best

A

B
Figure 6: Data points (white discs) are clustered hierarchically (grey
bubbles). For every viewpoint, an optim al selection of cluster nodes
is produced, which fills the available space on the screen. When the
user moves from A to B, the selection of clusters changes automati-
cally.

A B C

Figure 7: Since the selection from the cluster is computed in
panoramic coordinates, a head rotation (A→ B) does not require a
re-clustering; only a translation (B→C) does.

configuration. We randomly select an unfolding and a folding op-
eration (replacing a group of nodes by their common parent). The
quality of the resulting configuration is determined as usual, via the
cumulative benefits. Note that during this optimization step, the
maximum cost given by equation 4 is not exceeded. The optimiza-
tion terminates after a defined number of iterations, which makes
performance very predictable.

5.2 Temporal coherence
After the initial selection, the labels are presented to the user. For
interactive use, it is important to ensure temporal coherence and
suppress jumping motion of labels. Therefore, labels are adjusted
incrementally in every frame. After a change of viewpoint, the pk
are recomputed, and the queue containing the Ru is re-sorted ac-
cordingly. BFS is restarted on the re-sorted queue. Usually changes
are small and continuous, so the optimization converges quickly af-
ter only a few operations.

Note that in the most common cases, the view transformation
does not require a re-computation of the k-means clustering and
can run with camera frame rate (30Hz) on mobile devices. Re-
clustering is only necessary if user location dependent attributes
change significantly, or if the user changes the attribute weighting.

Many attributes considered in this process are not dependent on
the user’s current location, for example, the Euclidean distance of
two locations or the difference in real estate prices between two
locations. In these cases, any viewpoint change simply requires
adjusting the selection (Figure 6).

Re-clustering may not be necessary, even if attributes are used
which depend on the user’s current location, such as the walking
distance to a location or the visibility of an item from the user’s cur-
rent viewpoint or not. Since users will often stand and look around,
we compute the view transformation in panoramic coordinates cen-
tered at the user’s current location. Updating the selection for a
user who just turns the head and does not (or only minimally) move
(Figure 7, A to B), does not require any re-clustering. Likewise, the

user may dynamically adjust the desired attribute values without
triggering a re-clustering.

Only if the user walks by more than a certain distance (Figure 7,
B to C) (usually a rare event), a re-clustering is necessary. The
computation takes below one second in our experiments (Table 1),
which is usually not disturbing for the user.

5.3 Local view management
Assigning a fixed position to labels turns label placement into a
discrete label selection problem: We only need to determine the set
of labels chosen for display. However, this discretization can lead
to poor results, if many important labels occupy the same region.

We increase the quality of view management after label selec-
tion by subjecting them to another optimization that purely con-
siders spatial placement. This placement employs the “hedgehog
labeling” technique [17], which places annotations in world space
to achieve stable layouts. The movement of a label is constrained to
a plane parallel to the image plane. The scale is set up so that anno-
tations have the same size, independent of their distance. This ap-
proach gives enough flexibility to compensate for poor initial place-
ment, while ensuring temporal coherence of label adjustments. We
use hedgehog labeling both when a node is first displayed and to
compensate for local clutter after a viewpoint translation. However,
we must handle the case where labels move off the screen. A leaf
node will simply be omitted, but an intermediate node represent-
ing at least one data point on the screen must always be displayed.
This problem can be handled by the hedgehog labeling by adding a
constraint enforcing that only on-screen coordinates are eligible.

6 GLYPH DESIGN

The visual mapping stage transforms data points into glyphs en-
coding the relevant attributes. Glyphs are a common way to visual-
ize multi-dimensional data in a meaningful way [23]. In our case,
glyphs inform the user about the represented data points and the
relation of the different categories to the current user preferences.

It also should have a compact visual footprint, so that it does
not cover too much screen real estate. We use two variants of the
glyph, one for leaves (individual data points) and one for interme-
diate nodes. The glyph for a leaf Lk (see Figure 8(a)) should con-
vey the relevance of the represented data point to the user directly.
It consists of a square icon with a footer text describing the data
point (e. g., stating a business name). The icon has a thick frame,
which is color-coded according to the leaf’s benefit B(k), where 1
is green and 0 is red. Inside the square, there is room for up to
three attributes selected by the user, arranged as a horizontal mini-
barchart. Next to an icon identifying the attribute, the agreement of
the selected attribute with index j to the user’s preference is shown,
i. e., c f j(Ak, j,U j).

The glyph for an intermediate node (see Figure 8(b)) summarizes
the relevance of the leaves it represents. It is also a square icon.
The number of leaves represented by the glyph is shown in the top
left corner, similar to icons of popular mobile user interfaces. Like
in the leaf glyph design, the frame of the glyph is color coded to
show the average benefit of the contained nodes. A box extending
on a line at the bottom of the glyph shows the spatial extent wP
of the cluster relative to the screen width, depicted as a fraction of
the glyph width. Similar to the leaf glyph, a mini-barchart inside
the square displays up to three selected attributes. However, the
bar size for each attribute is proportional to the average agreement
avg(k, j) over all leaves with the user’s preference:

avg(k, j) =
∑Li∈leaves(k) c f j(Ai, j,U j)

|leaves(k)|
(10)

Averaging the content of the node provides a good general overview
of the contained data values. However, when users look for the best
matches to certain criteria, the averaging operation hides potentially

(a)

(b)

Figure 8: Glyph design. (a) The glyph for a single data point com-
pares the data to a user defined reference value. The border color
indicates the average matching quality of the selected attributes to
the reference attributes (the greener the better). (b) The glyph for
grouped items shows the information averaged over all items.

good matches in the intermediate node visualization. Alternatively,
an intermediate node can represent the leaf node with the best ben-
efit and adapt its appearance accordingly.

7 INTERACTING WITH CLUSTERS

We allow user interaction in every step of the pipeline of Figure 3.
To be able to change the structure of clustering during the data
transformation, we provide the users with an interface for adapting
the weights of the attributes and, thus, changing their preferences.
To facilitate the interaction, the interface allows users to specify the
weights not as absolute values, but relatively to each other. Inter-
nally, the relative settings are mapped to weights that sum up to
one, as required by the algorithm. Changing the weights triggers
recalculation of the hierarchy.

The user can change the weights of the algorithm by using the
numbered buttons of the user interface as shown in Figure 3. The
user interface shows three attributes. The weight w j for each at-
tribute is calculated based on the integer values V of the buttons.
Each weight w is calculated according to the following equation,
which makes sure that the sum of the calculated weights is one.

w j =
V j

∑
n
i=1 Vi

The user interface also allows users to specify the user prefer-
ence values U that are used to calculate the benefit of the nodes.
Consequently, this changes the selection of nodes from the hierar-
chy, but not the hierarchy itself. The visual mapping of the glyphs
is also updated accordingly.

Users set the preference values U using the row of symbols be-
neath the numbered weight buttons. We chose this interface to sim-
plify the selection of preference values. Instead of using a slider
or entering values by hand, the user simply taps a symbol. Each

(a) (b)

Figure 9: Interacting with groups. A user can unfold grouped items by tapping their glyph. (a) The user taps the glyph indicated by the red arrow.
(b) The unfolded new elements are highlighted using a blue outline. To make room, other items are replaced by the group they belong to.

#POI Clustering Selection Sum
100 63ms 16.5ms 79.5ms
500 258ms 59.9ms 317.9ms
1000 744.4ms 111.1ms 855.5ms

Table 1: Performance data. The table shows performance measure-
ments (in milliseconds) of the clustering and the selection steps. The
application code was not optimized and was executed in a single
thread on an Intel i7 with 2.7GHz.

symbol represents a distinct value that has been set up beforehand,
thereby building an ordinal scale of values. A user can select one of
these values as preferred value for this attribute. Internally, the sys-
tem normalizes the range of values and calculates their similarity
using the Euclidean distance.

In the view transformation step, the user must be able to man-
ually unfold clustered representations. We allow the user to drill
down by unfolding the subsequent levels of the hierarchy step-by-
step. The user simply clicks on a glyph representing an intermediate
nodes to unfold the next level of the hierarchy. If the user’s unfold-
ing leads to a violation of the clutter metric, the system will first try
to relax the situation locally via hedgehog label adjustments. How-
ever, it may occasionally be necessary to invoke fold operations on
other labels to make room for the user’s unfolding (see Figure 9).
This problem can be handled implicitly in the label selection op-
timization by assigning a higher weight to the benefit of the label
unfolded by the user.

By default, this user-driven benefit will slowly wear off with an
exponential decay. This allows the user to explore different areas on
the screen or branches of the cluster hierarchy incrementally. Older
user interactions will become less relevant over time and eventually
make room for newer interactions. However, the user may instruct
the system to remember choices indefinitely.

We measured the scalability of the system and, thus, of the inter-
action on an Intel i7 with 2.7GHz. Note that the application used
only a single thread and the code was not optimized. The results
are shown in Table 1. Even when working with 1000 data points,
our system could perform the clustering and selection steps in less
than one second. Given that AR browsers usually work with remote
data, these steps could also be performed on dedicated servers.

8 USER EVALUATION

We conducted two user evaluations: The first one was a pilot study
in which we compared our interface against a conventional filtering
interface. In the second one, we explored the effect of different

degrees of clustering.

8.1 Comparing to Filter Interface

In this pilot study, we performed a qualitative evaluation to compare
our hierarchical clustering interface against a conventional filter-
ing interface. We were interested in the user’s qualitative feedback
comparing the two interfaces: our interface versus one resembling
commercial AR browsers. We concentrated on the magnitude of the
potential improvement of the user experience and not on quantita-
tive aspects such as task performance. Instructing users to “work
as fast as possible” may, in fact, influence the participants to adopt
a behavior that does not resemble a typical use case anymore. We,
therefore, instructed users to work at their own pace and favor in-
sight over speed. Note that the second study, explained in the next
section, takes a closer look at the mechanics of our user interface.

We investigated two interface conditions: our hierarchical clus-
tering user interface (HUI) and a filter user interface (FUI). The
folding and unfolding of HUI behaved as described before. We
also allowed participants to switch the presentation of intermedi-
ate nodes between showing the average of all contained items and
showing only the best contained item (see Section 6). FUI behaved
like a state-of-the-art AR browser filter interface3. The data items
were filtered according to parameters set up by the user. As com-
mon in AR browsers, the data items were presented using a simple
glyph representation, consisting of a circle and additional textual
information, with full details revealed on demand. Setting filter
parameters removed information from the AR view that did not
correspond to the filter parameters. We integrated the same view
management system into FUI as we use in HUI, so that occlusions
between glyphs could be resolved.

The interface condition was counterbalanced among the partic-
ipants. We used the same amount of data in both interfaces, but
changed the attributes of the data between conditions.

Hypothesis. FUI removes data that does not correspond to the
user preferences. However, the screen will be cluttered, if too many
data items are preserved. In addition, setting the filter parameters in
FUI to find relevant data points might be challenging. HUI aggre-
gates items and reduces clutter. HUI allows users to set preferences
to which items are compared to, which makes it easier to identify
relevant data items. Therefore, we expected HUI to be preferred.

Scenario and Setup. We used an accommodation search sce-
nario in the evaluation. We gave the participants the task to find
rental apartments that fulfill certain requirements. For this purpose,

3www.layar.com, www.wikitude.com

Mode Mean (SD)
Question FI HI FI HI
I liked the visualization of data
items in the interface.

3 1 3.375 (0.92) 1.375 (0.74)

I found the visualization of data
items helpful.

3 1 3 (0.53) 1.25 (0.46)

The interface was convenient for
finding apartments.

2 1 2.625 (0.74) 1.5 (0.76)

The interface was convenient for
comparing apartments.

3 2 3.5 (1.07) 1.75 (0.71)

The interface provided a good
overview of the data.

3 1 3.125 (0.99) 1.75 (1.04)

Table 2: Questionnaire results for first study. The mode and mean
(with standard deviation) of the questionnaire results of a five-point
Likert Scale (1 .. strongly agree).

we performed the study outdoors in an area with high-rise apart-
ment buildings. The attributes of the data were created randomly
and registered to the locations of the apartments. Their locations
were not occluded and, therefore, clearly visible from the partici-
pants’ current position and registered to real world objects. We did
not use hidden objects, since the distinction between visible and
hidden would complicate the visualization and was not part of our
research question. The study followed a within-subject design.

We used the following apartment attributes: number of rooms
(scale with three entries), square meters (scale with five entries),
price range (scale with five entries). Participants could set one or
more of the categories of each attribute. The text of the leaf node
corresponded to the final price of the apartment.

We deployed the interfaces on a tablet computer (Microsoft Sur-
face Pro 2, Windows 8.1) and used the front-facing camera for cap-
turing the surroundings. We used a panorama tracker [22] and de-
vice sensors (IMU) to determine the orientation of the device and
align the data with the real world. The resolution of the application
was set to 1280x720 and corresponded to the camera resolution.

Task. In order to see how participants would use the interfaces,
we gave them an open task for apartment search. We asked them to
look for apartments that suited their criteria. The underlying moti-
vation is that users identify interesting apartments and collect them
into a list to revisit them later to allow better decision making.

Procedure. We met the participants at a meeting place, where
they filled out the consent form and a demographic questionnaire.
Then we moved to the apartment site, where the study was per-
formed. At the site, we explained the first interface.

After they were confident with using the interface, we asked
them to solve the given task. We also asked the participants to speak
aloud during the task. After finishing the task with both interfaces,
they filled out a questionnaire asking for feedback and rating the
interfaces. We concluded the session by asking open questions re-
garding their experience.

Results and Discussion. A total of 8 people (3 female) aged
26–34 (mean=31.5,sd=3.17) took part in the study. In the ques-
tionnaires, we forced participants to decide for either FUI or HUI as
the preferred interface. Seven of eight participants preferred HUI.
An exact binomial test found a significant difference (α = 0.05) that
HUI is the preferred choice (p< 0.05). In addition, we asked partic-
ipants, if the intermediate node in HUI should show the average of
all or the best item. All participants preferred the best item, because
finding the best item is most relevant for a search task. The average
would hide this information. In general, the questionnaire revealed
that participants were in favor of our interface (see Table 2).

The one participant who did not prefer HUI argued that while the
clustering reduces the amount of clutter, the registration of the items
summarized by the cluster is lost. In FUI, the location of an item

was clearly visible, if the amount of clutter was not too high. There-
fore, the participant suggested grouping items by stronger location-
based criteria, such as the floor number, and also adding more op-
tions to the user interface for targeting items based on their spatial
location to the user interface. Note that while we did not include
stricter location-based groupings in our study, our system can eas-
ily support this by adding the respective attribute to the data.

In general, 62.5% of the participants made use of the real world
registration of apartments during their search for an apartment. For
instance, if several apartments had attributes of similar quality, the
one that was on a higher floor was preferred. This underlines the
usefulness of the spatial registration of items for this task.

Participants preferred HUI, because it provided a better overview
of the data. In HUI, 75% of the participant not only considered the
best matches, but also checked for other apartments that were close
to the set criteria. FUI reduced the number of items, but information
about other apartments was missing. 50% of the participants noted
that increasing the search range of FUI adds items to the screen,
causing more clutter and making comparisons more difficult.

In FUI, the visual clutter and the lack of detail compared to the
glyph representation made finding and comparing items difficult.
We speculated that this can be remedied by adding a similar glyph
representation as in HUI to FUI. Therefore, we performed a follow-
up study, which included a condition similar to FUI, but this time
using the same glyph representation than HUI.

8.2 Different Degrees of Clustering

We conducted a comparative evaluation of three variations of POI
clustering to assess if the amount of shown information affects the
performance in a search and in a successive recall tasks.

We investigated three clustering conditions in a between-subjects
design. In the first condition, there was no clustering, and all the
leaf nodes were displayed at the same time to the user (LUI) (see
Figure 10(b)). Note that LUI essentially corresponds to FUI of
the previous study, but now using the same glyph representation
as HUI to make it easier to compare different items. Therefore,
LUI corresponds to a condition resembling a common AR browser,
which uses a filter interface. However, in this study, we reason that
the filter parameters lead to a large amount of selected data, thereby,
filling the whole screen.

In the second condition, a clustering algorithm was introduced,
in which items were grouped by proximity and the parameters set
by the user (SUI) (see Figure 10(c)). In this condition, the user
was able to unfold groups of items. Once the items were revealed,
the leaf nodes were not merged back into clusters automatically.
Therefore, after a certain number of interactions, the display was
populated by a growing number of leaf nodes, similarly to LUI. Fi-
nally, the third condition was HUI, as used in the previous study
(see Figure 10(a)). In both HUI and SUI, participants could merge
back items into clusters manually by sequentially undoing their un-
fold operations. Additionally, HUI also performed automatic de-
cluttering according to the described algorithm.

Hypothesis. LUI showed all available items, independent of
their relevance to the user. After a number of interactions in SUI,
a similar situation occurs, because the unfolded leaf nodes remain
visible on the screen. In HUI, the unfolded leaf nodes are regrouped
into clusters, after additional groups are unfolded. We expected the
leaf nodes populating the display in LUI and SUI to produce visual
clutter and to affect the performance in a search and selection task
and in a successive recall task of the previously selected items.

Scenario and Setup. We reused the apartment search scenario
of the first study, but conducted the second study at a different loca-
tion. The interface had the same functionality as the HUI interface
in the previous study. We added functionality to perform the recall
task. By pressing a button, the superimposed glyphs were removed,
and only the view through the camera was shown. A participant

(a) (b) (c)

Figure 10: The interfaces used in the second study differed in the way items were clustered. (a) Adaptive information density display (HUI)
with hierarchical clustering, after unfolding a number of groups. (b) Interface without clustering (LUI) showing all data at once. (c) Interface with
simple clustering (SUI) based on spatial proximity and similarity.

could indicate the location of a previously selected item by tapping
on the screen to mark its location with a white square. The apart-
ment attributes remained the same, except for the text of the leaf
node, which indicated the size of the apartment in square meters.

Task. Participants were asked to perform two tasks. The first
consisted of a search and selection task, in which participants had to
find and select all the apartments matching the characteristics indi-
cated by the experimenter. In the second task, they were shown the
surroundings without any digital information superimposed, and
they were asked to indicate the locations of the apartments that they
remembered from the search and selection task.

Procedure. On the day of the test, participants were first briefed
on the experimental procedure and aims. Then they gave informed
consent to take part in the study. After they had filled in a brief
questionnaire collecting background information, they were led to
the spot where the test took place. First, participants were instructed
how to operate the interface. Then, they were allowed to practice
with the interface, until they felt confident. Next, the experimenter
asked participants to search and select all the apartments matching
certain characteristics: a size from 80 to 90 m2, in the highest price
category and with the largest number of rooms. In total, there were
20 items matching the required characteristics. Participants were
told to alert the experimenter, when they believed they had found
all the items. Participants were instructed to be careful in perform-
ing the task, as they would be required to carry out a second task
based on the first one. There were not explicitly told about the recall
task, in order to prevent the use of mnemonic strategies. When par-
ticipants told the experimenter that they had concluded the search
and selection task, they started the recall task. Again, participant
were asked to tell the experimenter when the task was completed.
Finally, we asked the participants to complete a brief questionnaire
to collect their opinions and impressions.

Participants. 36 participants (18 female) volunteered in the
study, 12 in each condition. The mean age of was 24.27 (sd=2.5).
Subsamples were composed of 50% women and balanced for age,
as confirmed by a one-way ANOVA, F(2)=.067, p=.93. All par-
ticipants had very limited experience with AR, if any.

Results. The number of correctly selected items, the number
of wrongly selected items and the task durations were compared
across the three conditions with a one-way ANOVA (see Fig-
ure 11). Statistical analysis revealed no significant differences in
the number of correct selections (F(2)=1.88, p=.16). Similarly,
the time required to complete the task did not significantly differ in
the three conditions (F(2)=1.54, p=.22). A significant difference
emerged in the number of errors users made, when they included
apartements into their selection that did not match the requested cri-
teria (F(2)=5.04, p=.012). Post-hoc comparison with Bonferroni
correction confirmed that with HUI, users made significantly fewer
wrong selections (median=18.66, sd = 7.04) compared to SUI
(median=30.18, sd=9.22). A reduction in the number of errors is

Figure 11: Correct and wrong selections of the search and selec-
tion task. When using the adaptive display, participants made signif-
icantly fewer wrong selections during the search task.

evident, when comparing the number of wrong selections in LUI
(median=23.75, sd=9.6) and HUI (median=18.66, sd=7.04),
even though the difference was not significant.

For the recall task, we computed the relative number of correct
recalls as the ratio of the correctly retrieved locations and the num-
ber of correct selections of the selection task. Surprisingly, no sig-
nificant difference emerged comparing the three indexes in a one-
way ANOVA (F(2)=.26, p=.76).
Regarding the post-use questionnaires, a Kruskal-Wallis test
showed no significant differences in the way users evaluated the
three systems in terms of information organization, ease of use,
involvement, pleasantness of use and satisfaction. A one sam-
ple t-test run against the central value of the response scale, i.e.,
3, showed a trend (t(11)=2.22, p=.04) towards preferring HUI
(median=3.6,sd=.9) in contrast to LUI (median=3,sd=.9) and
SUI (median=3.4,sd=.79).

Discussion. The significant difference in the error rate during
the search and selection task indicates that participants were more
focused on selecting the relevant items in the HUI condition. The
adaptive interface of the HUI condition actively avoids showing re-
sults that do not correspond to the current selection of the user,
thereby reducing visual clutter and decreasing the chance of dis-
tracting the user from the currently relevant items.

Interestingly, there was no significant difference in identifying
the found items in the recall task. We believe that the reason for
this is that the amount of clutter was not high enough to impact the
perception of the presented data. To allow for a fair comparison
between the three interface conditions, we limited the number of
items in the surroundings to a small amount (219 items). The num-
ber was chosen in a way so that LUI could still arrange the items on

the screen and the items were still clearly visible and distinguish-
able. However, this generally reduced the amount of clutter, and
participants did not seem to have issues identifying items in the LUI
and SUI interface, even though the screen was covered with items.
Nevertheless, the post-use questionnaires revealed a trend towards
participants being more satisfied with the adaptive interface (HUI).

9 CONCLUSION

We presented a method that reduces the visual clutter created by
placing items in the view of an AR browser. Our method balances
the amount of presented information against the potential clutter
created by placing items on the screen. This information density
display for AR uses hierarchical clustering to create a data structure
that allows us to select the appropriate level-of-detail for the avail-
able display space. Our method selects single items and groups of
items from the hierarchy based on user-defined preferences and the
amount of visual clutter.

We conducted a qualitative pilot study to compare our interface
to a conventional AR browser interface. Users clearly preferred
our interface, because it provided a better overview of the data and
allowed for easier comparison. We conducted a second study to
evaluate the effect of different degrees of clustering. Users gener-
ally made fewer errors when using our interface for a searching,
which indicates that the reduced clutter allowed them to focus on
finding the relevant items. There was a trend towards preferring our
interface. However, the preference was not as clear as in the pilot.

We will perform a follow-up study with a larger number of items
to identify additional differences when users are exposed to dif-
ferent degrees of clustering. We believe that clutter may have a
stronger influence on search and recall tasks when users must re-
late the items to the real world context. Users of AR applications
generally must relate the augmented display space shown on the
display device to features of the real world context recorded by the
video camera. With an increasing amount of clutter, the augmented
display space becomes increasingly occluded. Therefore, it may be
more difficult to identify features of the world that items relate to.

In addition, we will investigate methods to take real world geom-
etry into account during the hierarchical clustering phase in order
to avoid grouping items that are located, e.g., in different floors of a
building. We will furthermore improve the interface to incorporate
additional location specific criteria for setting user preferences.

Although we did not test it, we speculate that mixing 2D con-
tent (e.g., conventional heads-up displays or menus) and 3D con-
tent (POI labels) can easily be integrated into our system. If the
application places 2D content independently of 3D content, the as-
sociated regions can be simply marked as occupied in the layout
algorithm and will not be considered for POI placement. If 2D con-
tent is related to 3D content, it can be treated as a special class of
label. Assuming that the 2D content fits into a rectangular canvas,
the layout optimization has to be extended to consider the size of the
labels and not just the number of labels. The overall optimization
approach need not be changed.

While the presented interface is targeted at mobile phones, the
current state-of-the-art AR platform for the consumer market, the
algorithm can also be deployed on head-mounted displays to reduce
visual clutter. Avoiding visual clutter for head-mounted displays is
even more critical than for mobile phone displays. When using a
mobile phone, a user has the AR view of the phone and an unob-
structed view of the real world. However, head-mounted displays
overlay information directly in the field-of-view of the user, thereby
obstructing the only available view. Hence, the information density
must be controlled so that head-mounted displays can provide con-
venient access to location-based information without blocking the
view. We believe that when knowledge about the world becomes
widely available adaptive information density displays such as the
one presented in this paper will become indispensable.

ACKNOWLEDGEMENTS

This work was partially funded by the European Union (FP7-ICT-
601139 ”CultAR”, FP7-ICT-611526 ”Magellan”), by the Austrian
Science Fund (FWF) under contract P-2402 and by the Christian
Doppler Society (”CDL Handheld Augmented Reality”).

REFERENCES

[1] R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIn-
tyre. Recent advances in augmented reality. Computer Graphics and
Applications, IEEE, 21(6):34 –47, Dec. 2001.

[2] M. Balzer and O. Deussen. Level-of-detail visualization of clustered
graph layouts. In APVIS ’07., pages 133–140, Feb 2007.

[3] B. Bell, S. Feiner, and T. Höllerer. Orlando, Florida.
[4] E. A. Bier, M. C. Stone, K. Pier, W. Buxton, and T. D. DeRose. Tool-

glass and magic lenses: the see-through interface. In SIGGRAPH ’93,
pages 73–80, 1993.

[5] S. K. Card, J. D. Mackinlay, and B. Shneiderman. Readings in infor-
mation visualization: using vision to think. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1999.

[6] A. Dix and G. Ellis. by chance: enhancing interaction with large data
sets through statistical sampling. In AVI ’02, pages 167–176, New
York, NY, USA, 2002. ACM.

[7] G. Dueck and T. Scheuer. Threshold accepting: A general purpose op-
timization algorithm appearing superior to simulated annealing. Jour-
nal of Computational Physics, 90(1):161 – 175, 1990.

[8] N. Elmqvist and J.-D. D. Fekete. Hierarchical aggregation for in-
formation visualization: overview, techniques, and design guidelines.
IEEE TVCG, 16(3):439–54, June 2010.

[9] S. Feiner, B. Macintyre, and D. Seligmann. Knowledge-based aug-
mented reality. Communications of the ACM, 36(7):53–62, July 1993.

[10] G. W. Furnas. Generalized fisheye views. CHI ’86, 17(4):16–23, Apr.
1986.

[11] D. Holten. Hierarchical edge bundles: visualization of adjacency re-
lations in hierarchical data. IEEE TVCG, 12(5):741–8, Jan. 2006.

[12] S. Julier, Y. Baillot, D. Brown, and M. Lanzagorta. Information filter-
ing for mobile augmented reality. IEEE CG & A, 22(5):12–15, 2002.

[13] S. Maass and J. Döllner. Dynamic Annotation of Interactive Environ-
ments using Object-Integrated Billboards. In WSCG’06, pages 327–
334, 2006.

[14] C. D. Manning, R. Prabhakar, and H. Schütze. Introduction to Infor-
mation Retrieval. Cambrige University Press, 2009.

[15] E. Mendez, D. Kalkofen, D. Schmalstieg, and E. Méndez. Interactive
context-driven visualization tools for augmented reality. In ISMAR
’06, pages 209–218, 2006.

[16] J. Pearl. Heuristics: Intelligent Search Strategies for Computer Prob-
lem Solving. Addison-Wesley Longman Publishing Co., Inc., 1984.

[17] M. Tatzgern, D. Kalkofen, R. Grasset, and D. Schmalstieg. Hedgehog
labeling: View management techniques for external labels in 3d space.
In IEEE VR’14, March 2014.

[18] M. Tatzgern, D. Kalkofen, and D. Schmalstieg. Multi-perspective
compact explosion diagrams. C & G, 35(1):135–147, 2011.

[19] M. Tatzgern, D. Kalkofen, and D. Schmalstieg. Dynamic compact
visualizations for augmented reality. In IEEE Virtual Reality (VR),
pages 3–6, Mar. 2013.

[20] M. Tatzgern, D. Kalkofen, D. Schmalstieg, and Schmalstieg, Dieter.
Compact explosion diagrams. In Computers & Graphics, volume 35,
pages 135–147, New York, New York, USA, June 2010. ACM Press.

[21] K. Virrantaus, J. Markkula, A. Garmash, V. Terziyan, J. Veijalainen,
A. Katanosov, and H. Tirri. Developing GIS-supported location-based
services. In WISE’01, volume 2, pages 66–75, 2001.

[22] D. Wagner, A. Mulloni, T. Langlotz, and D. Schmalstieg. Real-time
panoramic mapping and tracking on mobile phones. In Proc. IEEE
Virtual Reality, pages 211–218, Boston, USA, March 2010.

[23] M. O. Ward. A taxonomy of glyph placement strategies for multidi-
mensional data visualization. Information Visualization, 1(3/4):194–
210, Dec. 2002.

[24] A. Woodruff, J. Landay, and M. Stonebraker. Constant density visual-
izations of non-uniform distributions of data. UIST ’98, pages 19–28,
New York, NY, USA, 1998. ACM.

