
Situated Visualization in Augmented
Reality

DOCTORAL THESIS

to achieve the university degree of

Doktor der technischen Wissenschaften

submitted to

Graz University of Technology

Author

Markus Tatzgern

Supervisor

Prof. Dr. Dieter Schmalstieg

Graz University of Technology

Referee

Assoc. Prof. Dr. Kiyoshi Kiyokawa

Osaka University

Graz, Austria, June 2015





Abstract

A common goal of Augmented Reality (AR) is to communicate additional information

about real world entities or to support certain tasks of a user. AR applications achieve

this by overlaying virtual data directly on top of the real world. The overlaid information

can consist of simple annotations, such as the names of the restaurants that are closest to

the user. The overlays can also guide a user through maintenance and assembly tasks. In

these examples, AR technology is used to visualize information regarding the surrounding

real world environment. This thesis refers to this kind of AR visualization as situated

visualization.

Creating effective situated visualizations is challenging. While some of the involved

issues are unique to AR, others have already been encountered in related visualization

areas such as information visualization and scientific visualization. Consequently, situated

visualization can draw inspirations from a large body of work. This thesis identifies the

issues of visualization in AR and builds connections to related areas to provide a solid

foundation for situated visualization. Based on this foundation, this thesis contributes a

variety of solutions to problems encountered in situated visualization.

The focus of this thesis lies in addressing the most pressing issues of situated visu-

alization that severely limit the usability of AR. Specifically, this thesis aims to provide

solutions that support users in achieving overviews of the presented data. To provide

overviews, the thesis addresses the issue of data overload when presenting large amounts

of data. This is achieved by new view management techniques that not only reduce the

amount of data and provide layouts that are free of interferes, but are also temporally

coherent.

Because of the inherent ego-centric viewpoint, overviews are difficult to achieve in AR.

Therefore, this thesis also investigates new techniques that allow users to compensate for

their ego-centric viewpoint using transitional interfaces and multi-perspective renderings.

The presented techniques also allow zooming viewpoints of situated visualizations, which

is a challenging task to realize in AR.

iii





Kurzfassung

Augmented Reality (AR) kommuniziert für gewöhnlich einfache Zusatzinformationen

zu Objekten in der Welt, kann aber auch den Benutzer bei bestimmten Aufgaben

unterstützen. AR-Anwendungen realisieren das, indem sie virtuelle Daten direkt über

der realen Welt anzeigen. Diese überlagerten Informationen können aus einfachen

Annotationen bestehen, die die Namen von Restaurants in der näheren Umgebung

anzeigen. Diese Überlagerungen können Benutzer aber auch durch Wartungs-

und Montageaufgaben leiten. In den genannten Beispielen wird AR-Technologie

zur Visualisierung von Informationen verwendet, die sich auf etwas in der realen

Umgebung beziehen. Diese Arbeit bezeichnet diese Art der Darstellung als ortsbezogene

Visualisierung.

Das Erzeugen von effektiven ortsbezogenen Visualisierungen ist sehr anspruchsvoll.

Während einige der dabei aufkommenden Probleme nur auf AR bezogen sind, sind andere

schon in verwandten Visualisierungsgebieten, wie zum Beispiel der Informationsvisual-

isierung und der wissenschaftlichen Visualisierung, aufgetaucht. Die ortsbezogene Visu-

alisierung kann sich deswegen auf einen reichen Schatz an Arbeiten aus diesen Gebieten

stützen. Diese Arbeit idendifiziert zuerst die Probleme von AR-Visualisierungen und stellt

Verbindungen zu verwandten Wissensgebieten her, um eine solide Grundlage für ortsbe-

zogene Visualisierungen zu schaffen. Basierend auf dieser Grundlage steuert diese Arbeit

anschließend eine Reihe von Lösungen zu Problemen der ortsbezogenen Visualisierung bei.

Diese Arbeit konzentriert sich darauf, Lösungen für die größten Herausforderungen der

ortsbezogenen Visualisierung zu finden, die deren Anwendbarkeit für AR am stärksten ein-

schränken. Um genauer zu sein, präsentiert diese Arbeit Lösungen, die es den Benutzern

von AR erlauben einen Überblick über die präsentierten Daten zu bekommen. Um diese

Überblicksvisualisierungen zu ermöglichen, präsentiert diese Arbeit Lösungen zur Vermei-

dung von überfüllten Anzeigen, falls zu viele Daten dargestellt werden. Dies wird durch

neue Layouttechniken erreicht, die nicht nur die Menge der Daten verringern und Lay-

v



vi

outs erzeugen, die frei von Konflikten sind, sondern die sich auch über die Zeit koherent

verhalten.

Weiters schränkt der inherent egozentrische Blickpunkt von AR die Möglichkeiten

von Benutzern einen Überblick über die Daten zu bekommen stark ein. Diese Arbeit

präsentiert neue Techniken, die diesen egozentrischen Blickpunkt ausgleichen, indem sie

Benutzern erlauben zu virtuellen Blickpunkten zu wechseln und multi-perspektivische

Darstellungen anzuzeigen. Die präsentierten Techniken erlauben es Benutzern auch deren

Blickpunkt zu zoomen, etwas, das in AR sonst schwer zu realisieren ist.



Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than

the declared sources/resources, and that I have explicitly marked all material which has

been quoted either literally or by content from the used sources.

The text document uploaded to TUGRAZonline is identical to the presented doctoral

thesis.

Place Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als

die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich

und inhaltlich entnommene Stellen als solche kenntlich gemacht habe.

Das in TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden Disser-

tation identisch.

Ort Datum Unterschrift





Acknowledgments

I am grateful for all the people that I worked with and that supported me over the years.

First of all, I thank my scientific advisor Dieter Schmalstieg, who gave me the freedom to

follow my ideas and at the same time provided guidance and support so that I did not

stray too far from the path set by my thesis. I also thank Kiyoshi Kiyokawa for agreeing

to be my second advisor and for the valuable feedback and suggestions for finishing this

work.

My thanks also go to my colleagues Raphael Grasset, Jacob Boesen Madsen, Valeria

Orso, Hartmut Seichter, and Eduardo Veas, with whom I had the pleasure to work on

different research topics that make up this thesis. I especially thank Denis Kalkofen, with

whom I collaborated closely over the last couple of years. I also thank all my colleagues,

scientific and staff, I had the opportunity to work with over the years.

I am also grateful for the people close to me for providing their support and sticking

with me, when I was busy. Gerald, who introduced me to climbing, my now favorite sport.

He and Magdalena made sure that I would not forget how to get up a vertical wall. Marcel,

Philipp and Michael for making me climb more. Peter, who showed me how to fly drones

and then repair said drones. Birgit, for the many relaxing discussions over dinner. And

especially Sylvaine, for her wonderful support and high tolerance for long working hours.

Lastly, and most importantly, my deepest thanks go to my family, for all their love

and support.

ix





Contents

1 Introduction 1

1.1 Augmented Reality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Situated Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Visualization Challenges . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.2 Challenges of Augmented Reality . . . . . . . . . . . . . . . . . . . . 9

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5.1 Combining Filtering and View Management . . . . . . . . . . . . . . 14

1.5.2 Temporally Coherent View Management . . . . . . . . . . . . . . . . 15

1.5.3 Extending the Ego-centric Viewpoint . . . . . . . . . . . . . . . . . . 16

1.6 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Background 21

2.1 Visual Clutter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Reducing Data Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.2 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 View Management and Temporal Coherence . . . . . . . . . . . . . . . . . . 26

2.3.1 Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.2 Explosion Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Combining Data Selection and View Management . . . . . . . . . . . . . . 34

2.5 Extending the Ego-centric Viewpoint . . . . . . . . . . . . . . . . . . . . . . 36

2.5.1 Transitional Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.2 Multi-perspective Rendering . . . . . . . . . . . . . . . . . . . . . . . 38

3 Combining Filtering and View Management 41

3.1 Compact Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.1 General Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.1.1 Clustering Redundant Data . . . . . . . . . . . . . . . . . . 44

3.1.1.2 Layout Creation . . . . . . . . . . . . . . . . . . . . . . . . 44

xi



xii CONTENTS

3.1.2 Compact Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.3 Compact Photo Collections . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.4 Compact Explosion Diagrams . . . . . . . . . . . . . . . . . . . . . . 50

3.1.4.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1.4.2 Clustering Redundant Assembly Groups . . . . . . . . . . . 52

3.1.4.3 Layout Initialization . . . . . . . . . . . . . . . . . . . . . . 54

3.1.4.4 Layout Optimization . . . . . . . . . . . . . . . . . . . . . 61

3.1.5 Combined Optimization of Data Types . . . . . . . . . . . . . . . . 66

3.1.6 AR Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.1.6.1 Interactive Framerates . . . . . . . . . . . . . . . . . . . . . 67

3.1.6.2 Minimizing Layout Dimensions . . . . . . . . . . . . . . . . 69

3.1.6.3 Scene-Aware View Management . . . . . . . . . . . . . . . 70

3.2 Hierarchies in View Management . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2.1 Adaptive Information Density of Annotations . . . . . . . . . . . . . 74

3.2.1.1 Hierarchical clustering . . . . . . . . . . . . . . . . . . . . . 75

3.2.1.2 Optimal label selection . . . . . . . . . . . . . . . . . . . . 77

3.2.1.3 Glyph Design . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.2.1.4 Interacting with Clusters . . . . . . . . . . . . . . . . . . . 82

3.2.1.5 Evaluation: Comparing to Filter Interface . . . . . . . . . . 84

3.2.1.6 Evaluation: Different Degrees of Clustering . . . . . . . . . 87

3.2.2 Hierarchies in Compact Visualizations . . . . . . . . . . . . . . . . . 91

3.2.2.1 Two-Level Compact Photo-Collections . . . . . . . . . . . . 91

3.2.2.2 Explosion Diagrams . . . . . . . . . . . . . . . . . . . . . . 93

3.3 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4 Temporally Coherent View Management 99

4.1 Compact Visualization: Optimizing for Temporal Coherence . . . . . . . . . 100

4.1.1 Minimally different neighbors . . . . . . . . . . . . . . . . . . . . . . 100

4.1.2 Minimize potential distractions . . . . . . . . . . . . . . . . . . . . . 102

4.2 Hedgehog Labeling: Stable Annotations in Object-space . . . . . . . . . . . 104

4.2.1 Layout Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.2.2 Layout Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.2.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.2.4 Comparison of Variations . . . . . . . . . . . . . . . . . . . . . . . . 114

4.3 Evaluating Coherence in View Management . . . . . . . . . . . . . . . . . . 114

4.3.1 View Management Algorithms . . . . . . . . . . . . . . . . . . . . . 115

4.3.1.1 Continuous Updates . . . . . . . . . . . . . . . . . . . . . . 115

4.3.1.2 Discrete Updates . . . . . . . . . . . . . . . . . . . . . . . . 117

4.3.2 Evaluation: Update Approach and Spatial Representation . . . . . . 119

4.3.3 Evaluation: 3D Continuous and Discrete . . . . . . . . . . . . . . . . 127

4.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128



CONTENTS xiii

4.4 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5 Extending the Ego-centric Viewpoint 133

5.1 Object-centric Exploration Techniques . . . . . . . . . . . . . . . . . . . . . 134

5.1.1 Design Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.1.2 Interface Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.1.3 Evaluation: Abstract Scenarios . . . . . . . . . . . . . . . . . . . . . 140

5.1.3.1 Evaluation Testbed . . . . . . . . . . . . . . . . . . . . . . 141

5.1.3.2 Experimental Design . . . . . . . . . . . . . . . . . . . . . 142

5.1.3.3 First Study: Varying Copy and Cues . . . . . . . . . . . . 142

5.1.3.4 Second Study: Varying Spatial Separation . . . . . . . . . 144

5.1.4 Evaluation: Real-World Scenario . . . . . . . . . . . . . . . . . . . . 146

5.1.4.1 Pilot study: Real-world Setting . . . . . . . . . . . . . . . . 146

5.1.4.2 Experimental Design . . . . . . . . . . . . . . . . . . . . . 147

5.1.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.1.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.1.5 Design Recommendations . . . . . . . . . . . . . . . . . . . . . . . . 155

5.2 Smart Transitions using Scene Semantics . . . . . . . . . . . . . . . . . . . . 156

5.2.1 Interface Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.2.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.2.3 Capturing Scene Semantics . . . . . . . . . . . . . . . . . . . . . . . 160

5.2.4 Context-Aware Transitions . . . . . . . . . . . . . . . . . . . . . . . 163

5.2.5 Intermediate Transitions . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.3 Multi-perspective Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.3.1 Secondary Viewpoints of Objects . . . . . . . . . . . . . . . . . . . . 169

5.3.2 Embedded Views in Real World Environments. . . . . . . . . . . . . 176

5.4 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 180

6 Conclusion 183

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.2 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

A Acronyms 191

Bibliography 192





Chapter 1

Introduction

Contents

1.1 Augmented Reality . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Situated Visualization . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Augmented Reality (AR) overlays virtual data directly on top of the real world. A

common goal of AR is to communicate additional information about real world entities or

to support certain tasks of a user. The overlaid information can consist of simple annota-

tions, such as the names of the restaurants that are closest to the user. The overlays can

also guide a user through maintenance and assembly tasks. In these examples, AR tech-

nology is used to visualize information regarding the surrounding real world environment.

This thesis refers to this kind of AR visualization as situated visualization [146].

Creating effective situated visualizations is challenging. While some of the involved

issues are unique to AR [79], others have already been encountered in related visualization

areas such as information visualization and scientific visualization. Consequently, situated

visualization can draw inspirations from a large body of work.

This thesis identifies the issues of visualization in AR and builds connections to related

areas to provide a solid foundation for situated visualization. Based on this foundation, this

thesis contributes a variety of solutions to problems encountered in situated visualization.

1



2 Chapter 1. Introduction

1.1 Augmented Reality

Milgram et al. [95] defined the Reality-Virtuality continuum, which allowed them to classify

AR with respect to traditional Virtual Reality (VR) (Figure 1.1). The continuum spans

the two extremes from only presenting the unmodified real world to presenting a purely

virtual world. Everything between these extremes can be classified as Mixed Reality (MR).

Within the range of MR applications, AR is situated closer to the real world, because it

mainly shows a real world representation, e.g., in the form of a video stream, which is

modified by virtual objects.

Figure 1.1: Reality-virtuality continuum (Image taken from Milgram et al. [95]).

The most accepted definition of AR comes from Azuma [6], who defined that AR

applications must exhibit three characteristics:

1. They combine the real and virtual world,

2. they are interactive applications and run in real time, and

3. they are registered in 3D.

Both Milgram et al. [95] and Azuma [6] explicitly stated that AR is not bound to a

certain display technology. Consequently, their definitions and classifications are device

agnostic. In fact, AR applications can be displayed using very different technologies and

platforms, such as a Head-Mounted Display (HMD) [60], a mobile phone [96], or by using

a projector system [17].

The first AR system is attributed to Sutherland [125], who built an HMD (Figure 1.2)

which could overlay virtual line renderings on top of the real world. However, it was not

until the early 90s, before the term AR was coined by Caudell and Mizell [24] in a paper



1.1. Augmented Reality 3

that describes an HMD system which supports workers in aircraft manufacturing processes

by overlaying instructions directly on top of the real world.

Figure 1.2: The first known HMD-based AR system by Ivan Sutherland (Image taken
from Sutherland [125]).

The first stand-alone mobile outdoor AR system was built by Feiner et al. [39]. Their

“touring machine” allowed users to explore the campus of the Columbia University by

adding information to the real world. The system used an HMD in combination with a

portable computer for creating 3D graphics. To estimate the viewpoint of the user relative

to the real world, they used Global Positioning System (GPS) for positional tracking and

orientation sensors to retrieve yaw, pitch and roll angles. Shortly afterwards, Thomas et

al. [135] presented a similar system.

While the first mobile AR systems used expensive HMD technology, researches strived

to create AR systems which could run on off-the-shelf consumer grade hardware. Conse-

quently, handheld AR systems were created, which were deployed on a tablet PC [66], a

Personal Digital Assistant (PDA) [142], or a smart phone [96].

To date, the most common and widely available platform for commercial AR appli-

cations are smart phones. Smart phones are compact mobile computers with impressive

computational performance and come by default equipped with a video camera, GPS sen-



4 Chapter 1. Introduction

sor and compass, which can be used to estimate the user’s viewpoint of the real world. This

made smart phones a natural platform for AR applications and gave rise to companies12

which focused on creating AR systems and applications for these mobile devices.

1.2 Visualization

The dictionary definition of “to visualize” is “to form a mental image of something” or

“to make (something) visible”. Visualization per se refers to a human cognitive ability

where somebody gains insight into or acquires knowledge about something [122, p.5].

Visualization can be supported by pictorial representations. Such representations can

reduce the complexity of data and map it to easily understandable concepts. One of the

most striking examples of such a depiction is a flow map drawn by the French cartographer

Charles Joseph Minard in 1869 (Figure 1.3). With this simple depiction, Minard effectively

tells the story of Napoleon’s fatal Russian campaign in 1812.

Figure 1.3: A flow map drawn by Charles Joseph Minard. The thickness of the line
represents the number of men in Napoleon’s army during the Russian campaign of 1812.
The decreasing thickness clearly communicates the tragic loss of human life, especially on
the way back to France when winter set in.

Napoleon set out to conquer Russia with an army of around half a million soldiers

(brown line); he returned to France with only around 20.000 (black line). Aside from the

1http://www.metaio.com/
2https://www.layar.com/

http://www.metaio.com/
https://www.layar.com/


1.2. Visualization 5

size of the army, the map also provides a spatial representation to illustrate the troop

movement and temperature information of the Russian winter the army faced on their

retreat. With the help of Minard’s map, a viewer can quickly and easily gain insight into

aspects of Napoleon’s campaign without studying bare numbers.

Researchers also benefit from such visual representations of data, which support them

in gaining insights from measurement and simulation data. The investigated data sets

are generally too large to create hand-drawn illustrations. However, increasing computa-

tional performance lead to the emergence of the field of visualization in computer science.

Computers not only allow researchers to quickly and conveniently create visual represen-

tations of data, but also to interact with these representations in order to analyse the data

from different viewpoints or to highlight certain aspects of the data. Card et al. [23, p.6]

provide a definition of visualization in computer science, which sums it up as “the use of

computer-supported, interactive, visual representations of data to amplify cognition”.

Visualization is divided into different research areas. Two major areas are scientific

visualization and information visualization [41]. Scientific visualization mainly deals with

physics-based data gathered from measurements or simulations. Therefore, it also has an

inherent spatial mapping to the physical world (Figure 1.4(a)). Information visualization

focuses mainly on presenting abstract, non-spatial data, which has to be mapped to a

spatial representation (Figure 1.4(b)).

(a) (b)

Figure 1.4: Scientific and information visualization. (a) Scientific visualization focuses
mainly on mapping physical measurements or simulation data to the inherent spatial refer-
ence frame (Image taken from Schulz et al. [116]. (b) Information visualization transforms
abstract data into spatial mappings (Image taken from Holten [62]).



6 Chapter 1. Introduction

1.3 Situated Visualization

Visualization is also a research area in the field of AR. A major advantage of AR is that

information that relates to the real world can be displayed and explored directly in the

spatial reference frame of the real world environment. White and Feiner [146] refer to this

type of visualization as situated visualization.

In contrast to scientific and information visualization, the definition of situated visu-

alization does not make a difference between the types of data to display. For instance,

abstract data is commonly communicated using annotations [51] (Figure 1.5(a)), but also

physics-based data is visualized [36, 146] (Figure 1.5(b)). Both are situated visualizations,

because they relate to something that is present in the real world. The main defining prop-

erty of situated visualization is this connectedness of the information to the real world.

This is in accordance with White [145], who defines that the visualized data must be

related to a physical context. Hence, the definition of situated visualization is based on

the visualized data itself and not the system that is used to visualize this data. Situated

visualizations can be created using any kind of system that allows to register data in the

real world.

Note that visualizations in AR are not automatically situated visualizations, even

though they are displayed by using AR technology. Figure 1.5(c) shows an example of

a visualization that is not a situated visualization. Even though AR is used for explor-

ing a scientific visualization [45], the presented data is completely disconnected from the

surrounding real world. Because of this missing relation, the AR system could easily be

converted to a VR system by removing the real world background.

1.4 Challenges

A shared issue among all of these visualization disciplines is the presentation of large

amounts of data. However, AR researchers have encountered issues, which are unique to

AR and may have to be addressed when creating visualizations for AR. For instance, a

major issue is the dynamic nature of the real world environment, which makes it difficult

to create a single visualization, which fits to all real world scenarios.

The following sections discuss the issues of situated visualization. While some of these

issues are unique to AR, others have also been encountered in information and scientific

visualization. Therefore, situated visualization designers can build on the large body of

previous work from these areas. The issues described in the following will also be discussed



1.4. Challenges 7

(a) (b) (c)

Figure 1.5: Situated visualization. Situated visualizations can communicate (a) abstract
information in the form of annotations (Image taken from Grasset et al. [51]), but also
(b) physical properties and measurements, such as the air pollution (Image taken from
White and Feiner [146]). They are always connected to a real world entity. (c) Not all
AR visualizations are situated visualizations. In this example, data is visualized using AR
technology (Image taken from Fuhrmann et al. [45]). However, the visualization does not
connect to a real world entity.

in the light of this previously gained knowledge. From here on, the term AR visualization

also refers to situated visualization, if not indicated otherwise.

1.4.1 Visualization Challenges

Situated visualization must face the same challenges as traditional visualization. Data

overload leads to a cluttered presentation when too much data is presented, which impairs

its understanding. Users also must be able to explore the data interactively.

Data Overload. Presenting a large amount of data in AR quickly leads to a cluttered

presentation, which makes it hard for a viewer gain insight into the data. The problem is

aggravated when using an AR platform, which has only a limited amount of presentation

space, such as smartphone displays in handheld AR.

Azuma et al. [7] identified this situation as the problem of increasing data density. They

refer to two complementary solutions to manage the data. The first solution is to reduce

the amount of data by filtering [40, 70]. The second solution is view management, which

creates a layout of the data so that it is not interfering with other important information.

In the context of information visualization, Spence [122] refers to the issue of data

density as data overload. Handling large amounts of data was a main motivation for

the fields of scientific and information visualization. Early on, these fields developed



8 Chapter 1. Introduction

architectural models to cope with this problem. Most visualizations are based on such

models. In the domain of scientific visualization, Haber and McNabb [55] describe a

pipeline for mapping data to a visual representation. Card et al. [23] present a similar

model tailored to information visualization, which also takes into account a user interacting

with the visualization. Although there are slight differences in these models, they generally

incorporate the following three steps to visualization (Figure 1.6):

1. Data transformation

2. Visual mapping

3. View transformation

Figure 1.6: Visualization pipeline as proposed by Card et al [23] (Image taken from Card
et al. [23]).

The data transformation step encompasses the reduction of the data by filtering or

aggregating data points. Visual mapping refers to the creation of visual structures of the

data such as color and shape. The view transformation finally determines properties such

as the position and scale of the visual structures.

Coming back to the two complementary solutions, filtering and view management, for

handling the issue of data density in AR [7], it becomes clear that these steps can be

integrated nicely into the data transformation and the view transformation steps of the

traditional visualization pipeline.

User Interaction. In contrast to hand-drawn illustrations, a core aspect of computer-

supported visualization is the ability to interactively explore the data. Therefore, an

effective visualization supports the exploration by providing an appropriate interface. In



1.4. Challenges 9

the area of information visualization, the design of visualization interfaces was heavily in-

fluenced by the “information seeking mantra” presented in the seminal work of Shneider-

man [119]. The mantra is based on the extensive experience of Shneiderman in designing

interfaces for exploring large amounts of data and involves three main tasks that users

want to perform: “overview first, zoom&filter, then details-on-demand”. Shneiderman

defined the tasks as follows:

• “Overview: Gain an overview of the entire collection.

• Zoom: Zoom in on items of interest

• Filter: filter out uninteresting items.

• Details-on-demand: Select an item or group and get details when needed.”

While Shneiderman only intended to provide recommendations for information visu-

alization systems and did not see the steps as being prescriptive [29], many successful

visualizations have been designed by following this mantra. Therefore, designers of situ-

ated visualizations should also consider these recommendations, since they could support

users getting valuable insights into the data.

1.4.2 Challenges of Augmented Reality

When embedding situated visualizations into the real world, several issues must be ad-

dressed:

1. Visual coherence: a viewer must be able to “connect” real and virtual, i.e., to spa-

tially relate the visualization to a real world location or object.

2. Visual interference: a viewer must be able to easily discern important from irrelevant

information.

3. Dynamics of AR and temporal coherence: changes of the real world environment

or the viewpoint of the user can cause distracting changes of the visualization. To

avoid distractions, the changes must be performed in a temporally coherent way.

4. Ego-centric viewpoint: the user is limited to an ego-centric viewpoint when exploring

a visualization. This is a major limiting factor of AR.

5. Registration errors: when the registration of the visualization is erroneous, it may

communicate false information.

In the following, these issues will be discussed in more detail.



10 Chapter 1. Introduction

Visual Coherence. Naively overlaying virtual augmentations on top of the real world

does not create a very convincing rendering, because real and virtual objects do not

interact with each other. The augmentations seem to float in the world. Breen et al. [20]

speak about a lack of physical and visual interaction between real and virtual, referring

to occlusion and illumination. This not only creates unconvincing renderings that are

not visually coherent to the real world, but also impacts the understanding of an AR

visualization. Important depth cues are missing, which help viewers to estimate the spatial

relations between augmentations and the real world.

To improve the visual coherence between the virtual information and the real world,

occlusions and illumination must be rendered correctly. For instance, invisible virtual

models of real world objects can be registered to the real world and their depth values can

then be used to render correct occlusion relationships [20, 74]. The virtual content can

also be shaded using the real world lighting conditions [43].

Aside from occlusion and illumination, technical issues of AR platforms should also

be considered for creating visually coherent AR visualizations. For instance, in video

see-through AR, the image pipeline and lens of the used camera can add distortions and

other artifacts to the captured image. This pipeline can be modelled and applied to the

augmentations to improve the integration of virtual content into AR [78].

Visual Interference. Visualizations generally emphasize the relevant parts of data in

a way that guides the viewer’s attention to this information. Without this emphasis, the

information can easily be overlooked, because it does not stand out from the rest of the

data.

In situated visualization, the viewer’s attention must be guided towards the important

parts of the scene, and irrelevant aspects of the real world should not be distracting. This

requires that visual interferences between the visualization and the real world must be

avoided. Kalkofen [71, p.23] identified this as a focus&context visualization problem in

AR. The relevant part of the scene is the focus, while the rest of the scene provides context.

Figure 1.7(a) shows that the focus is emphasized to guide the viewers attention and the

rest of the scene is deemphasized to avoid distractions.

Visual interferences between the visualization and the real world can also be caused

by the placement of the augmentations, which can cause occlusions of the augmented real

world object and other important landmarks. Therefore, view management techniques

have been developed, which avoid such occlusions by rearranging the virtual content [12,

51] (Figure 1.7(b)).



1.4. Challenges 11

(a) (b)

Figure 1.7: Visual interferences. The presentation of a visualization can interfere with
the real world. (a) Therefore, the focus of the visualization must be emphasized to avoid
visual interferences with the background and to guide the viewer’s attention. Here, the
focus is emphasized by reducing the saliency of the context (Image taken from Kalkofen et
al. [72]). (b) The visualization can also occlude important landmarks. View management
techniques can place content to avoid such occlusions. Here annotations are moved away
from the buildings into free spaces (Image taken from Grasset et al. [51]).

Dynamics of AR and Temporal Coherence. A major issue of visualization in AR

is that, in contrast to traditional visualization, the real world context is not static, but

changes over time. For instance, people or cars pass through the video image, or the

lighting conditions change. Hence, augmentations may not be visually coherent with the

real world anymore. Recent advances made it feasible to estimate both illumination [54]

and occlusions [65] in real-time, which allows AR applications to react to changes to the

environment. Consequently, AR visualizations can also be updated to reflect changes to

the environment.

Changes to the real world environment can also cause visual interferences, because

a visualization that is designed for certain conditions may not be effective when these

conditions change. Figure 1.8 shows a visualization of the internals of a car. While the

internals are clearly visible in the yellow car (Figure 1.8(a)), the same visualization causes

perceptual problems when the car is exchanged for a red one (Figure 1.8(b)).

To avoid such visual interferences, Kalkofen [71] suggests to create adaptive visual-

izations, which react to changes of the real world context they are embedded in. Com-

putational aesthetics [59] has the goal to automatically create presentations that are also

visually pleasing to humans [53].

Because of the dynamics of AR, visualizations may change over time to adapt to the



12 Chapter 1. Introduction

Figure 1.8: Visual interference. (a) The visualization clearly shows the internals of the
car in the rear. (b) A poor choice of color severely impacts the perception of the occluded
information (Images taken from Kalkofen et al. [73]).

new conditions. However, frequent and strong changes in the visualization can distract

a viewer from perceiving the communicated information. Therefore, visualizations must

behave in a temporally coherent way.

This aspect is especially important in view management systems that create layouts

of annotations in AR by continuously enforcing certain layout constraints [12]. In such

systems, simple viewpoint changes may already introduce significant layout changes, which

must be treated accordingly to achieve temporally coherent updates.

Ego-centric Viewpoint. Traditionally, visualization techniques are deployed in virtual

environments in which users can freely change the viewpoint of the visualization. However,

AR applications generally are limited to only one viewpoint: the egocentric viewpoint

of the user. This severely restricts the ability of users to explore information in real

world environments, because oftentimes users do not have a good vantage point on the

information, e.g., when exploring a building in a city environment. This also impacts the

interface design of situated visualizations, because tasks such as getting an overview [119]

cannot be performed from an ego-centric viewpoint.

There are three solutions to extend the ego-centric viewpoint of the user: offscreen

visualizations, multi-perspective renderings and transitional interfaces. Offscreen visual-

izations indicate to the viewer the direction in which information can be found outside of

the current view frustum (Figure 1.9(a)). Multi-perspective visualizations integrate addi-

tional viewpoints into the ego-centric AR view. These not only communicate the general

direction of the location of data, but can also expand the field of view of the user so that

the actual location of the data is shown (Figure 1.9(b)). Transitional interfaces combine

the AR view with VR views, which allows users to change viewpoints of the world with-

out physically changing their location (Figure 1.9(c)). The views are often connected by



1.5. Contributions 13

smooth transitions between AR and VR views to facilitate mentally linking AR and VR

views [16, 77].

(a) (b) (c)

Figure 1.9: Extending Ego-centric Viewpoint. There are three solutions to expand the ego-
centric AR viewpoint of the user. (a) Offscreen visualizations indicate information outside
of the field of view (Image taken from Jo et al. [69]). (b) Multi-perspective renderings
expand the field of view (Image taken from Mulloni et al. [97]). (c) Transitional interfaces
provide virtual viewpoints of the real world (Image taken from Bane and Höllerer [10]).

Registration Errors. A situated visualization relates to something that is present in

the real world. Hence, the visualization is registered to the real world and relies on accurate

and stable registration methods. However, registration can still fail in many instances,

which causes misalignments between the augmentations and the real world context they

refer to.

To cope with this problem, visualizations should also take the precision of the regis-

tration into account. For instance, Roberts and MacIntyre [109] communicate the error

to the viewer by integrating a virtual copy of the real world context into the visualization

(Figure 1.10).

1.5 Contributions

The focus of this thesis lies in addressing the most pressing issues of situated visualization

that severely limit the usability of AR. The guiding principle of the presented research is

the information seeking mantra [119]. Specifically, this thesis aims to provide solutions

that support the overview task by addressing data overload when presenting large amounts

of data. This is achieved by new view management techniques that not only reduce the



14 Chapter 1. Introduction

Figure 1.10: Error visualization. (a) The registration error causes a misalignment of virtual
content and the real world context, here the engine compartment. (b) The registration
error can be resolved by integrating a copy of the context, in this case the outlines of the
car, into the visualization. (Images taken from Kalkofen et al. [73]).

amount of data and provide layouts that are free of interferes, but are also temporally

coherent.

Because of the inherent ego-centric viewpoint, overviews are difficult to achieve in AR.

Therefore, we also investigate new interaction techniques that allow users to compensate

for their ego-centric viewpoint. The presented techniques also allow zooming situated

visualizations, which is a task suggested by the mantra, but is challenging to realize in

AR.

While visual coherence is important for understanding the relationship between virtual

and real content, the priority of this work is to provide means for exploring information

in AR. Therefore, the presented AR applications use only basic depth cues by rendering

occlusions of real and virtual content correctly. Furthermore, the registration error is not

investigated, as more advanced tracking systems may eventually overcome this issue.

In the following, a detailed list of the contribution regarding the issues of situated

visualization is presented. This list is also reflected in the structure of the thesis.

1.5.1 Combining Filtering and View Management

Data overload has a major impact on a user’s ability to understand the presented infor-

mation. Common filter techniques reduce the amount of data to a sensible amount, but

may remove relevant information in the process.

We present a general framework for creating a compact visualization which avoids

data overload by only removing redundant data (see Section 3.1). We present a novel

combination of filtering and view management that avoids information loss and thereby



1.5. Contributions 15

creates effective overview visualizations. In contrast to previous work, this combined

approach already considers the layout of information in the filtering step. We illustrate the

generality of the approach with textual and pictorial annotations and assembly data [131–

133].

Furthermore, we introduce hierarchies of similar items into compact visualizations

(see Section 3.2.2). Hierarchies allow us to get more control over the visualization by

introducing multiple Level-of-Detail (LOD).

Compact visualizations filter redundant information. If such redundancies are not

available in the data set, the amount of data can be reduced by clustering data items

into groups of items according to user-defined similarity criteria. We present an approach

that creates a hierarchy of such clusters. Our view management algorithm chooses the

appropriate hierarchy levels to fill the screen-space efficiently to create an initial overview

for the user (see Section 3.2.1). The user can perform zoom&filter operations and request

details-on-demand.

Aside from data overload, we also address the issue of visual interferences between

virtual and real world content (see Section 3.1.6.3). We achieve this by controlling the

filter output of the compact visualizations. Furthermore, we make the real world to an

active part in the view management and allow manipulations of the real world scene

structure to avoid visual interferences [133].

1.5.2 Temporally Coherent View Management

In contrast to traditional visualization, the viewpoint of situated visualizations in AR can

change constantly. This causes frequent changes of the layout of information to avoid

visual interferences between the real world and the augmented content, but also between

the augmented content itself. Common approaches to achieve temporal coherence include

hysteresis and positional thresholds that delay the required changes as long as possible.

In this thesis, we show how to integrate temporal coherence into the optimization

of compact visualizations itself to minimize distracting layout changes during viewpoint

changes (see Section 4.1.1). Furthermore, we propose to freeze layouts during camera

motion and, at the same time, optimize the layout to avoid visual interferences between

the augmented information (see Section 4.1.2). We illustrate the solutions with assembly

and annotation data [133].

A common issue of unstable layouts in AR is the way in which the view management

is implemented. Typically, view management techniques create layouts in screen-space



16 Chapter 1. Introduction

coordinates. Such layouts are especially prone to unstable layouts during camera motion.

We present a new view management approach that both registers annotations and resolves

conflicts between annotations purely in 3D space (see Section 4.2). Furthermore, we

restrict the degrees of freedom of annotations to minimize the potential for conflicts. This

tremendously improves the temporal coherence of the layout [129].

In order to verify our novel approach, we compare it against different view management

systems. To the best of our knowledge, this is the first attempt to quantitatively compare

the effect of different implementations of view management systems on the task perfor-

mance of a user. Our system, which creates a static layout of annotations in 3D, clearly

outperforms the reference systems, which update labels to enforce layout constraints (see

Section 4.3).

1.5.3 Extending the Ego-centric Viewpoint

The usability of AR applications is severely impaired by the limitation to the ego-centric

viewpoint of the user. We investigated two solutions that solve this problem in AR:

transitional interfaces and multi-perspective renderings.

In contrast to previous transitional interfaces, our Object-Centric Exploration (OCE)

techniques allow users to retrieve a virtual copy of a real world object (see Section 5.1).

This allows users to investigate a real world without physically changing their location.

Hence, users can get an overview by interacting with the object, but also can zoom into

details [126, 130].

We evaluate the OCE techniques in urban settings and compare them to traditional

3D map applications. Based on our findings, we put forward design recommendations for

developing such interfaces [126, 127].

To facilitate the interaction with the virtual copy, we control the transition to virtual

viewpoints based on knowledge about the scene and about the task (see Section 5.2).

Therefore, our system can propose virtual camera viewpoints and manipulators that are

best suited for the current task of the user [130].

Aside from transitional interfaces, we explored multi-perspective renderings, that can

enhance the overview of an object by visualizing otherwise occluded areas (see Section 5.3).

We integrated multi-perspective renderings into the OCE techniques [126, 127], compact

visualizations [132], and we also demonstrate a prototype application using a preview

window for navigation tasks [128].



1.6. Publications 17

1.6 Publications

This thesis is the product of a collaborative research effort of a several people. This section

lists the publications, which are the foundation of this thesis:

• Markus Tatzgern, Denis Kalkofen, and Dieter Schmalstieg: Compact explosion di-

agrams. Symposium on Non-Photorealistic Animation and Rendering (NPAR ’10),

2010 [131] (see Sections 3.1.4 and 3.2.2.2).

• Markus Tatzgern, Denis Kalkofen, Dieter Schmalstieg: Multi-perspective compact

explosion diagrams, Computers & Graphics (C&G ’11), Volume 35, Issue 1, February

2011, [132] (see Sections 3.1.4, 3.2.2.2 and 5.3.1).

• Markus Tatzgern, Denis Kalkofen, Dieter Schmalstieg: Dynamic compact visualiza-

tions for augmented reality, IEEE Virtual Reality (VR ’13), 2013 [133] (see Sec-

tions 3.1.2, 3.1.5, 3.1.6 and 4.1).

The author was the main contributor to the design and development of compact

visualizations. The co-authors contributed to the concept and provided valuable

suggestions regarding the implementation.

• Markus Tatzgern, Denis Kalkofen, Raphael Grasset, Dieter Schmalstieg: Embedded

Virtual Views for Augmented Reality Navigation, IEEE International Symposium on

Mixed and Augmented Reality (ISMAR ’11), Workshop on Visualization in Mixed

Reality Environments, 2011 [128] (see Section 5.3.2).

The author was the main contributor to the design and development of multi-

perspective presentations for extending the ego-centric viewpoint of a user. The

co-authors provided valuable feedback and implementation suggestions.

• Markus Tatzgern, Raphael Grasset, Eduardo Veas, Denis Kalkofen, Hartmut Se-

ichter, Dieter Schmalstieg: Exploring Distant Objects with Augmented Reality,

Joint Virtual Reality Conference of EGVE - EuroVR (JVRC ’13), 2013 [126] (see

Section 5.1).

• Markus Tatzgern, Raphael Grasset, Eduardo Veas, Denis Kalkofen, Hartmut Se-

ichter, Dieter Schmalstieg: Exploring Real World Points of Interest: Design and

Evaluation of Object-centric Exploration Techniques for Augmented Reality, Per-

vasive Mobile Computing: Special Issue on Mobile and Pervasive Applications in

Tourism, 2014 [127] (see Sections 5.1 and 5.1.4).



18 Chapter 1. Introduction

The author was the main contributor to the design and development of the solution

to use a virtual copy metaphor for extending the ego-centric viewpoint of a user.

The author co-designed, implemented, performed and evaluated the user studies.

The co-authors contributed to the design of the presented concepts and provided

guidance regarding study design and evaluation.

• Markus Tatzgern, Raphael Grasset, Denis Kalkofen, Dieter Schmalstieg: Transi-

tional Augmented Reality Navigation for Live Captured Scenes, IEEE Virtual Re-

ality (VR ’14), 2014 [130]. (see Section 5.2).

The author was the main contributor to the design and development of the scene

capturing system and the presented transitional interfaces which use scene and task

knowledge to guide the virtual camera. Raphael Grasset co-designed the presented

solutions. The co-authors contributed to the concept and provided valuable sugges-

tions regarding the implementation.

• Markus Tatzgern, Denis Kalkofen, Raphael Grasset, Dieter Schmalstieg: Hedgehog

Labeling: View Management Techniques for External Labels in 3D Space, IEEE

Virtual Reality (VR ’14), 2014 [129] (see Section 4.2).

The author was the main contributor to the design and development of the 3D view

management techniques. The co-authors contributed to the concept and provided

valuable suggestions regarding the implementation.

• Markus Tatzgern, Valeria Orso, Denis Kalkofen, Giulio Jacucci, Luciano Gamberini,

Dieter Schmalstieg: Adaptive Information Density for Augmented Reality Displays,

submitted, 2015 [134] (see Section 3.2.1).

The author was the main contributor to the design and development of the adap-

tive information density algorithm. The author also co-designed, implemented, per-

formed and evaluated part of the user studies. The co-authors contributed to the

concept and performed part of the user studies.

• Jacob Boesen Madsen, Markus Tatzgern, Denis Kalkofen, Dieter Schmalstieg, Claus

B. Madsen: Evaluating Adaptive Labeling for Dynamic Handheld Augmented Re-

ality, submitted, 2015 [90] (see Section 4.3).

The author was the main contributor to the development of the view management

algorithms. The author also co-designed, implemented, performed and evaluated



1.6. Publications 19

part of the user studies. The co-authors contributed to the design, implementation

and evaluation of the user studies.





Chapter 2

Background

Contents

2.1 Visual Clutter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Reducing Data Overload . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 View Management and Temporal Coherence . . . . . . . . . . . 26

2.4 Combining Data Selection and View Management . . . . . . . 34

2.5 Extending the Ego-centric Viewpoint . . . . . . . . . . . . . . . 36

In this thesis, we compensate for data overload and the resulting visual clutter by

reducing the number of presented items using filter and cluster techniques. Furthermore,

we combine these techniques with view management to create spatial layouts that are free

of overlaps. This allows us to create overview visualizations of the input data that can be

used for further detailed exploration, e.g., by performing zooming and filter operations.

The inherent ego-centric viewpoint of AR limits the ability of users to get an overview

over the presented information. Therefore, we also developed methods to compensate for

this ego-centric viewpoint.

In the following, we review what visual clutter means in the context of visualization in

general (see Section 2.1). We identify data overload and the spatial layout as major causes

of clutter. We present related work in AR that handles data overload (see Section 2.2),

before discussing view management techniques to create layouts of information (see Sec-

tion 2.3). Section 2.4 discusses previous approaches that combine the filtering process and

the view management. Section 2.5 presents related work regarding the extension of the

ego-centric viewpoint in AR.

21



22 Chapter 2. Background

2.1 Visual Clutter

To achieve an effective overview of information, it is essential to avoid visual clutter. Visual

clutter has always been an issue in visualization, which often states the large number of

items as the main cause. Rosenholtz et al. [111] define visual clutter in visualization as

follows:

Clutter is the state in which excess items, or their representation or organiza-

tion, lead to a degradation of performance at some task.

They refer to visual search tasks that are common in visualization, where a specific

element must be identified. To achieve this, the element must be discernible from other

elements. Typically, the performance decreases with an increasing number of presented

items and users require more time to identify distinct items [149] (Figure 2.1). Aside form

the number of items, the location of the elements also influences the performance. If items

lie close to each other, they are harder to distinguish from each other. This is also due to

an effect called lateral masking. Lateral masking impairs perceiving an item when other

elements are located in its surroundings [144] (Figure 2.2). Hence, visual clutter may be

caused by the number of items and their layout.

(a) (b)

Figure 2.1: Performance of visual search and set-size. The performance of visual search
tasks is influenced by the amount of data. (a) In a smaller data set users will more likely
find the vertical red bar, (b) than in a larger data set.

Ellis and Dix [37] presented a thorough taxonomy of clutter reduction techniques for in-

formation visualization. They distinguish between three classes of techniques: appearance,

spatial distortion and temporal. Appearance refers to techniques that change the presen-

tation of the data items. This includes changing criteria such as the size and opacity of the



2.2. Reducing Data Overload 23

(a) (b)

Figure 2.2: Performance of visual search and spatial arrangement. Surrounding elements
can decrease visual search performance and distract from a certain item. This can be
compensated by increasing the spatial offset between the items. (a) The “O” hidden
among the “Q” is hard to spot, because of the similarities. (b) Increasing the spacing
between the letters can make it easier to find.

data points, but also filtering and clustering techniques that remove items completely from

the screen. Spatial distortion includes among others point displacement techniques that

change the positions of data items to avoid overlaps. Finally, temporal techniques refer to

visualizations that use animations to compensate for clutter and overlapping items.

The taxonomy presented by Ellis and Dix [37] can also be applied to situated vi-

sualization. Filtering techniques are also used in AR to reduce visual clutter [70], while

point displacement directly relates to view management techniques that change the spatial

positions of data to resolve overlapping items and occlusion of real world objects [12].

2.2 Reducing Data Overload

We use two techniques that alter the appearance of the data by removing items to com-

pensate for data overload: filtering and clustering. While filters completely remove items

from the presentation, clusters group them based on a defined distance function expressing

their similarity.



24 Chapter 2. Background

2.2.1 Filtering

Augmentations can be filtered by employing spatial or semantic criteria. Feiner et al. [40]

present a knowledge-based filter, which selects the appropriate information depending on

the current step in a sequence of maintenance operations. Knowledge-based filters are

the logical choice for showing sequences of operation, but can also be used to visualize

larger data sets. For this purpose, a Degree of Interest function can be defined, which

filters data based on priorities set by the user [46]. More complex filters use recommender

systems [47, 107] that take user preferences and suggestions from other users into account

to automatically suggest interesting items. However, such filters are not suitable for pre-

senting an overview of unknown data, because the user has to specify a distinct goal first,

or the system needs information about the user’s preferences.

Spatial filtering in AR is often implemented as a magic lens [15, 93], which filters

information in screen or object space (Figure 2.3). In contrast to the filter techniques

presented in this thesis, magic lenses do not create overviews of data, because they work

only locally in a small region. They typically require an undesirable amount of user

interaction to grasp the data in its entirety.

(a) (b)

Figure 2.3: Spatial filtering using a magic lens. (a) Virtual edges are augmented onto the
real car to provide depth cues for an x-ray visualization. Because of the large number of
edges, the visualization is cluttered. (b) A magic lens filters the edges and reduces clutter.
The edges are only shown at the spatial location of the lens (Images taken from Kalkofen
et al. [72]).

In applications for mobile phones, spatial filters are often combined with knowledge-

based filters to provide location-based services [139]. Location-based services take the

priorities and the current location of a user into account to present relevant items. In the

context of AR, Julier et al. [70] present a hybrid filter model that filters information based



2.2. Reducing Data Overload 25

on the proximity of the user. Each item has a spatial location and a nimbus surrounding

it. Once a user enters the nimbus of an object, it appears in the AR view. Knowledge

about the user’s task is integrated into the filtering to avoid presenting irrelevant items.

In this thesis, we present an approach to create compact visualizations that can also

be seen as a hybrid filter. Compact visualizations consider the user’s point of view as well

as the semantics of the augmentations. However, unlike previous approaches, compact

visualizations only filter redundant information and therefore do not lose any information.

Furthermore, they do not rely on preset priorities for data items like [70], but provide an

overview of all items, omitting only redundant data.

2.2.2 Clustering

Clustering also reduces the amount of data without any information loss. Instead of

removing data from the input data set, like filtering, clustering aggregates a number of

data points into groups based on a pre-defined similarity criterion. All data points of a

group are then represented by a representative visualization that summarizes the content

of the group. Typical representations in information visualization visualize the average

or median of the items contained in a group. Hence, clustering provides the user with an

overview of the available data.

(a) (b) (c)

Figure 2.4: Hierarchical clustering in parallel coordinate plots. The images visualize
230,000 data items from a fatal accident database. (a) Presenting all items at once leads
to a cluttered presentation. By performing hierarchical clustering, different levels-of-detail
can be calculated. (b) A higher level in the hierarchy visualizes more general trends in the
data, while (c) lower levels communicate more details (Images taken from Fua et al. [44]).

Users can interact with the clusters to explore the contained data items one by one.



26 Chapter 2. Background

However, with an increasing amount of data, the clusters grow too big to be explored

individually. The introduction of hierarchies into the clustering process can remedy this

problem [38] (Figure 2.4). A hierarchy of clusters can be created by either using a top-

down or a bottom-up approach [31]. A top-down approach starts with the complete input

data set and uses divisive methods to split the data into separate groups. A common

clustering method is k-means clustering. A bottom-up approach based on agglomerative

clustering starts with the separate data items and aggregates them into groups until all

items are aggregated.

By performing different types of traversals through the hierarchy, an application can

present different degrees of information to the user. Elmqvist et al. [38] differentiate

above-traversal, below-traversal, level-traversal, range-traversal and unbalanced-traversal.

Above-traversal show all clusters above a certain level, below-traversal shows all clusters

beneath a level. Level-traversal selects all clusters that lie on the same level, while range-

traversal can select multiple levels. Unbalanced-traversal is not restricted to a certain level,

but can be performed in a way to show the most interesting clusters of the hierarchy.

In this thesis, we use hierarchical clustering to avoid clutter of annotations in screen-

space. Using unbalanced-traversal, we select items from the hierarchy that match priorities

set by the user. At the same time, our algorithm controls the selection of items in order

to balance the location of the items in screen-space.

Note that in information visualization, clustering is not only used to reduce the amount

of data, but also to find patterns in the data that would otherwise be hidden in the clutter

of all items. Other application areas of clustering are image segmentation and object

recognition [67]. In this thesis, we do not consider this notion of clustering, but use it only

in a way to create groups of similar items.

2.3 View Management and Temporal Coherence

A major part of this thesis is dedicated to developing view management methods that

achieve clutter-free layouts of annotations. In this context, we also investigate the cre-

ation of layouts of 3D objects in the form of explosion diagrams of assemblies. Explosion

diagrams can be regarded as constrained view management problems, where the movement

of 3D objects is restricted to their assembly directions.

Naturally, the aspect of temporal coherence is closely tied to the view management

algorithm that creates the layout of the data. Therefore, we discuss this aspect together

with the respective view management algorithms.



2.3. View Management and Temporal Coherence 27

2.3.1 Annotations

Annotations enrich a user’s visual perception with a variety of annotations such as text,

image or even video data. Annotated objects appeared in the context of illustrations more

than one hundred years ago [52]. However, the problem of placing labels was first discussed

by cartographers [64] in the 70’s. In the early 80’s, computer graphics researchers started

to develop algorithms that mimic manual label placement [2]. Despite the maturity of this

research area, automatic label placement for interactive graphics is still an active topic of

research [42].

Naively placing annotations generally leads to clutter and occlusion, impairing the

effectiveness of AR visualization (Figure 2.5). For instance, occlusions among the an-

notations make the occluded labels unreadable (I). In addition, occlusions between the

annotations and the object they refer to (II) or crossing leader lines (III) render the visu-

alization very difficult to interpret.

Figure 2.5: Occlusions when presenting external annotations. Without view management
different types of occlusions may appear. (I) Annotations occluding each other. (II)
Annotations occluding the object of interest. (III) Leader lines crossing each other.

In order to resolve clutter and occlusion issues, so-called view management techniques

have been proposed for annotations [12]. These techniques automatically place annotations

either directly on the surface of the object they refer to (using a so called internal label),

or they place annotations outside the object of interest and draw a 2D line to its center

(using a so called external label).

In traditional media, such as printed illustrations, an illustrator or graphics designer

generally decides on the appropriate label type. The main factors influencing the selection



28 Chapter 2. Background

are the available space, personal preferences and intuition. Algorithms for automatically

placing internal labels have been presented across several disciplines of computer graphics

research, such as in volume visualization [68, 110], illustrative rendering [49, 88] and

AR [12, 148]. Internal labels can be considered to operate in 3D object space, because

they choose a position directly on the 3D object. Thus internal labels inherently support

frame-coherent rendering, because they do not suffer from camera movements, if glued to

the object of interest.

While internal labels support frame-coherent renderings, they require a certain amount

of space to entirely fit on the object of interest [57]. Therefore, such approaches are usually

limited to a rather small number of annotations. In addition, Coelho et al. [28] demon-

strated that internal labels become ambiguous in AR when the registration error increases.

This often makes them unsuitable for comprehensible information presentation in AR. We

agree with this argument and focus in this thesis on view management techniques for

external labels.

(a) (b)

Figure 2.6: Ambiguities when using internal labels. (a) Without registration error the
labels (highlighted red) would fit into the projected area of the drawers. However, a
small registration error creates ambiguities. The labels cannot be associated with certain
drawers anymore. (b) The leader lines of external labels are more tolerant to registration
errors and can resolve such ambiguities (Images adapted from Coelho et al. [28]).

A number of different techniques have been proposed to control the placement of

external labels. They have been successfully applied to produce high quality layouts for

desktop applications. However, since most of the existing techniques operate in 2D image

space, they are prone to unpredictable changes over time. This happens because the

screen-space distribution of the projected 3D points changes during camera movements,

which can force the view management system to frequently re-order external labels in



2.3. View Management and Temporal Coherence 29

image space. With increasing amount of label movement and re-ordering, the label motion

becomes difficult to follow, and the resulting layout becomes unstable over time. This is

illustrated in Figure 2.7.

(a) (b)

Figure 2.7: Problems of temporal coherence for annotations. (a) When applying view
management techniques, occlusions can be resolved, but camera movements may cause
unpredictable reordering of labels. (b) Rotating the camera causes the labels marked with
a red and blue arrow to change their order in y-direction.

Annotations in 2D. Approaches for automatic external label placement exist as well.

In their the seminal work, Bell et al. [12] propose a system for external and internal

label placement at run-time. The approach is based on empty space management in

image space, considering 2D screen aligned bounding boxes of annotations and objects in

the scene. However, since this system does not consider leader lines, it may suffer from

crossing leader lines or leader lines occluding annotations.

Hartmann et al. [56] propose an image-space approach, which evaluates a force field

in every frame and updates the label layout accordingly. Their implementation considers

leader line crossings and allows to align labels on non-rectangular shapes. This generates

high quality layouts in static scenes without camera motion. However, in dynamic situa-

tions, the force field changes in every frame, causing labels to constantly move and often

jump. The resulting layout is unstable over time.

Similarly, Azuma et al. [8] apply simulated annealing to resolve colliding elements,

while Rosten et al. [112] avoid covering important features in the environment by com-

puting a force field from an analysis of the current video image. Grasset et al. [51] also

use simulated annealing in combination with image saliency to guide the placement of

annotations in image-space.



30 Chapter 2. Background

Force-based strategies compute a reasonable compromise, but the quality of each label’s

position inevitably deteriorates as the scene becomes more densely occupied. In addition,

many algorithms ignore temporal coherence, which leads to unstable solutions and thus

frequently changing locations of elements.

Bell et al. [12] use three techniques to achieve temporal coherence. They use hystere-

sis to avoid frequent changes of labels switching between internal and external modes.

Furthermore, they take the previous position of a label into account when calculating its

new position. Finally, to avoid jumping movements when labels change position, they

smoothly animate the label to its new position.

To overcome the issue of temporal coherence for external 2D annotations, we use an

image space approach which freezes the layout as long as the camera is in motion. Thereby,

we avoid repositioning and also reordering labels in the visualization. Only after finishing

the camera motion, we animate the annotations to their new optimal position.

(a) (b) (c)

Figure 2.8: Positional lag when using screen-space annotations. Simulating and placing
annotations in image space causes positional delays during camera motion, because the
simulation has to update the annotations to their new positions relative to the object.
(a) Labels are arranged around the object. (b) When the camera starts to move to a
new viewpoint, labels stick to their image-space positions. Note the long leader lines to
the left. (c) Annotations can only stabilize their position relative to the object when the
camera stops moving.

Annotations in 3D. However, since this system still labels the object-of-interest (OOI)

in image space, leader lines can easily cross. Furthermore, image-space annotations retain

their pixel position during camera movement and must be moved to the new position

relative to an annotated 3D object. This causes the annotation to lag behind the de-

sired position (Figure 2.8). Therefore, we developed hedgehog labels as a novel view

management approach that treats annotations as 3D objects. In contrast to screen-space



2.3. View Management and Temporal Coherence 31

approaches, registering annotations in object space significantly reduces label motion when

moving the camera.

While internal labels are often placed in 3D space on the object, related work that

places external labels in 3D is rare. Chigona et al. [26] use an approach close to view

management of external labels in 3D object space. The authors show annotations of the

shadow of an object, which is projected to a single plane in 3D (Figure 2.9(a)). This plane

can be considered as an external 3D label. However, the system is limited to the points of

interest, which cast a shadow into this plane. Moreover, the extension of the shadow area

restricts the amount of labels which can be placed, which is similar to the restrictions of

internal labels.

(a) (b) (c)

Figure 2.9: View management in 3D. (a) Chigona et al. [26] annotate shadows of objects
(Image taken from Chigona et al. [26]). (b) Shibata et al. [118] place labels on a 3D plane
and apply very basic rules to create a layout. The 3D plane does not take the current
viewing direction into account (Image taken from Shibata et al. [118]). (c) Pick et al. [104]
create a label layout using a single 3D plane in front of the camera in a multi-display
environment (Image taken from Pick et al. [104]).

Shibata et al. [118] place annotations on a 3D plane in front of the camera (Fig-

ure 2.9(b)). They resolve occlusions with other objects and annotations by displacing

annotations on a circle surrounding the annotated object. This discretization of the place-

ment limits the possible positions of labels, which can lead to overlaps. Hence, the al-

gorithm does not scale well with the number of annotations. Furthermore, the plane

orientation and, thus, the orientation of the annotations is not updated when the cam-

era viewpoint changes. Therefore, it is not possible to freely explore a 3D object that is

annotated using this method. In addition, the algorithm does not resolve crossing leader

lines.

We also use 3D planes to constrain label movement in our 3D labeling approach.



32 Chapter 2. Background

However, the planes are placed relative to the annotated 3D object and updated when the

camera viewpoint changes. In addition, annotations can be arranged freely in the plane,

which makes our approach scale better with an increasing number of labels.

Pick et al. [104] present a view management approach that also treats annotations

as 3D objects (Figure 2.9(c)). To resolve occlusion between annotations and objects,

they use a 3D parameterization of a force-based approach as presented by Hartmann et

al. [56]. Their goal is to provide a view management approach that works across multiple

screens. Therefore, a 3D plane is introduced that is placed in front of the user. The 3D

annotations then move parallel to a single plane, instead of moving on multiple screens.

Plane and annotations are constantly updated, which can cause constant rearrangements

of annotations, like in the 2D approaches.

In contrast to Pick et al. [104], our hedgehog labeling approach is designed with tem-

poral coherence in mind. In hedgehog labeling, the movement of annotations is much more

constraint, to avoid rapid and constant label movement. We also avoid leader line cross-

ing already in the initialization of the layout. A variation of hedgehog labeling also uses

planes to constrain the movement of annotations. However, these planes are registered

directly to the real world object. This allows us to freeze the position and orientation of

annotations to achieve a stable layout that can be explored in AR.

2.3.2 Explosion Diagrams

Explosion diagrams visualize an assembly by displacing its parts against their assembly

direction. In the context of 3D view management, we investigate explosion diagrams as

heavily constrained layouts of 3D annotations.

Over the past 15 years, computer graphic researchers have investigated a number of

different methods to automate the generation of explosion diagrams. These methods create

explosion diagrams from many different kinds of data, ranging from 3D CAD data [108],

triangle soups [100] and volumetric data [21] to 2D image data [84]. In addition, a number

of different approaches have been presented to automatically compute the explosion’s

layout. Distortion techniques as presented by Raab and Rüger [106] scale occluding parts.

Force-based techniques as presented by Sonnet et al.[121] and Bruckner and Gröller [21]

use a set of interactively applied repelling and attracting forces, which define directions

and distances for offsetting parts. Agrawala et al. [1] and Li et al. [83] use spatial blocking

information between parts as well as a size analysis to automatically derive the relations

and directions.



2.3. View Management and Temporal Coherence 33

To control the visual complexity of an explosion diagram, the existing approaches

mainly provide interactive techniques. For example, Sonnet et al. [121] presented an in-

teractive system which moves parts of an object out of the 3D volume of an explosion

probe (Figure 2.10(a)). Bruckner and Gröller [21] interactively define the amount and the

relationships between forces to control the distances, direction and relative movements of

parts. Li et al. [83] presented techniques, such as dragging or riffling of parts, to interac-

tively explore a pre-computed explosion diagram, starting from a completely unexploded

presentation (Figure 2.10(b)).

(a) (b) (c)

Figure 2.10: Explosion diagrams. (a) Sonnet et al. [121] use an interactive 3D probe to
locally displace parts of an object (Image taken from Sonnet et al. [121]). (b) Li et al. [83]
automatically calculate an explosion diagram from a 3D CAD model (Image taken from
Li et al [83]). (c) Kalkofen et al. [74] use explosion diagrams in AR as x-ray technique to
reveals the internal parts of a real world object. In this image, the explosion is computed
to just reveal the base plate of the car (Image taken from Kalkofen et al [74]).

Even though research on rendering of explosion diagrams has often focused on inter-

active systems, few have investigated an automatic search of groups of parts to simplify

the explosion layout. Thus, the works closest to our approach are the systems of Ruiz et

al. [113], Kalkofen et al. [74], Agrawala et al. [1] and Niederauer et al. [100]. Niederauer

et al. [100] attempt to explode the floors of a building, searching for those triangles which

belong to a floor. Since different floors are usually offset at a certain distance and oriented

similarly, Niederauer et al. were able to find groups of triangles by applying a statisti-

cal analysis of their locations and orientations. Ruiz et al. [113] define the thickness of

parallel slabs of a volume, based on a similarity measure between neighboring slabs. The

similarity values are computed using mutual information. While the former approach only

performed well on structures similar to buildings, the latter is optimized for volumetric



34 Chapter 2. Background

data.

Explosions of groups of parts of a 3D CAD model have been presented by Kalkofen

et al. [74], Agrawala and later Li et al. [1, 83]. While Agrawala et al. and Li et

al. manually annotated their models with group information, Kalkofen and his colleagues

automatically group elements based on a selected focus element, which they aim to uncover

(Figure 2.10(c)). In a complete AND/OR-Graph data structure [63], they search for the

largest groups of parts which can be displaced from the subassembly containing the object

of interest. By recursively applying this search strategy on the AND/OR-Graph data

structure, their approach is able to compute a Focus and Context explosion layout with

an uncovered object of interest and a minimal number of contextual groups.

Our approach differs from Agrawala et al. [1], Kalkofen et al. [74] and Li et al. [83]

in that we do not restrict ourselves to six main explosion directions, but allow all valid

removal directions. Furthermore, we employ a sophisticated similarity measure [140] for

identifying similar parts, which are then arranged in similar ways in the final explosion

layout. Otherwise, it may happen that symmetric structures of assemblies are exploded

in different ways (Figure 3.9). While Agrawala and Li et al. [1, 83] manually annotate

the models with group information, we are able to find similar structures of the assembly

automatically and use them to create compact exploded views. Although Kalkofen et al.

[74] also group elements automatically, the found groups do not take into account any

structural information of the assembly, like, for instance, similar subassemblies.

2.4 Combining Data Selection and View Management

In this thesis, we combine filtering and clustering with view management techniques to

create the optimal layouts for the current viewpoint (see Chapter 3). Filtering the annota-

tion data before arranging it in a layout allows choosing a few good locations rather than

resorting to compromises. Part of this optimization is also to create layouts that make

best use of the available screen space.

Maass et al. [87] and Bell et al. [12] combine filtering with view management by omit-

ting annotations. Maass et al. [87] derive importance from depth values and can choose to

not render labels beyond a certain distance. However, this approach is prone to frequently

changing elements during camera movements. Bell et al. [12] filter annotations based on

the visibility of referring elements and a pre-assigned importance value. Their algorithm

arranges annotations with the highest priority first and stops adding annotations when

layout constraints would be violated. This approach results in more stable layouts, but



2.4. Combining Data Selection and View Management 35

manual preparation is required to assign importance values to objects, which is often

impractical in dynamic AR environments. Our combined filter and layout approach auto-

matically identifies relevant annotations based on a redundancy analysis and provides the

user with a representative overview of all annotations.

In map visualizations, clutter is avoided by clustering items into groups to finally create

an overlap-free layout of data. The clustering process typically aggregates items based on

their distance in screen space to avoid overlapping items [22]. Note that clustering can

be controlled to create layouts that increase the map legibility by increasing the spatial

offset between clusters (Figure 2.11). This is also an important aspect for AR, where the

presentation of an increasing amount of items also leads to an increasing amount of real

world occlusion.

(a) (b) (c)

Figure 2.11: Clustering data in map visualization. (a) Presenting a large number of items
in map visualizations leads to a cluttered display and overlapping items. (b) Aggregating
neighboring items into clusters reduces clutter and overlaps, while filling the screen space
with items. (c) To increase the map legibility, the spacing between clusters can be increased
to reveal more of the map. For this purpose, more distant neighbors are aggregated into
clusters (Images taken from Burigat and Chitarro [22]).

Woodruff et al. [150] take inspiration from map visualization and propose a constant

density information display. Such a display tries to fill the available screen space with

information. It also adapts the amount of presented information so that the information

density is constant during zooming. To measure the density, the screen is divided into cells

using a regular grid. Each cell can contain only a limited number of items. A placement

algorithm fills the screen by combining manually defined layers of data.

We adopt a similar grid-based approach to fill the screen with items from a hierarchical



36 Chapter 2. Background

clustering approach. The approach of Woodruff et al. [150] attaches the grid to the view-

port. This leads to flickering artifacts when the viewport changes, because the position of

the data items in the cells change. To achieve temporal coherence, we perform a spatial

subdivision around the viewpoint of the user. Therefore, data items are always assigned

to the same cells of the grid.

Dix and Ellis [32] propose to use random sampling to select samples from data sets that

are also balanced over the available screen-space. When returning to previously visited

viewpoints, the user should see items that have been shown when visiting the viewpoint

the first time. However, random sampling is not deterministic and will not select the same

items again. Using a viewpoint history that stores previously selected items can solve

this issue, but is hard to implement for AR applications that can exhibit random camera

motion.

2.5 Extending the Ego-centric Viewpoint

One of the main goals of our view management techniques is to provide overview visual-

izations that are a starting point for further interaction, e.g. by performing zooming and

filter operations. The inherent ego-centric viewpoint of AR limits the ability of users to

get an overview of the presented information. Therefore, we also developed methods to

compensate for this ego-centric viewpoint.

In information visualization, overview&detail techniques were developed to compensate

for the viewpoint limitation of users exploring a large data set [27]. The current view of

the user is regarded as the detail, while an additional visualization provides an overview of

the surroundings. Previous work in AR also recognized the need to extend the ego-centric

viewpoint of users to provide better overviews of the data and the real world.

A common solution in commercial AR browsers is the combination of the AR view with

a radar or a map that visualize the Points-of-Interest (POIs) around the user. Such visu-

alizations clearly provide an overview, but are disconnected from the real world. Hence,

the user has to mentally map the location of a map to a real world location. Another

solution is using offscreen visualizations in AR, which indicate POIs around the user [69].

However, offscreen visualizations only provide a directional indication and still require the

user to physically change location to investigate the POIs.

In this thesis, we focus on two additional techniques to extend the ego-centric view-

point of the user: transitional interfaces and multi-perspective renderings. Transitional

interfaces provide seamless transitions between different views of AR and VR, thereby



2.5. Extending the Ego-centric Viewpoint 37

allowing a user to change the viewpoint without physically moving. Furthermore, in con-

trast to traditional map visualizations, the seamless transition provides a spatial cue that

allows users to mentally map the viewpoints. Multi-perspective renderings extend the AR

view of users by integrating additional views of the real world into their current view.

In both approaches, the viewpoint of users is extended without them physically changing

location.

2.5.1 Transitional Interfaces

Bowman et al. [19] present instant teleportation techniques in VR environments and dis-

cover that the lack of continuous motion cues causes user to be disoriented. Consequently,

in the first transitional interface used in AR, Kiyokawa et al. [77] allow users to seamlessly

switch between a virtual and an augmented collaborative workspace. Seamless transitions

are also provided by the MagicBook [16], which allows users to switch between an exocen-

tric AR view on a VR scene and an immersed egocentric VR view on the same scene. In

contrast to this previous work, our interfaces switch from an egocentric to an exocentric

viewpoint and are designed for exploring real world objects.

Avery et al. [5] and Mulloni et al. [97] switch to exocentric viewpoints to provide an

overview on the surroundings. However, the overview is focused on the user’s position

and does not allow viewpoint changes around a focus object (Figure 2.12(b)). Sukan et

al. [124] and Veas et al. [138] allow switching to already established viewpoints and perform

transitions to these viewpoints. In contrast to our 3D interfaces, they provide only access

to a discrete number of views (Figure 2.12(c)).

A common solution to realize transitional interfaces is using a World-in-Miniature

(WIM) [123] to complement the egocentric view of the user. Bell et al. [13] use a WIM in

AR that shares annotations with the real world. Depending on the viewpoint of the user,

the annotations transition from real world object in AR to the VR copy. This concept

is similar to the visual links we present in this thesis. They connect the virtual and real

worlds. Unlike shared annotations, in which the annotation either addresses the real world

or the virtual world, visual links always connect both real and virtual worlds. Bane and

Höllerer [10] present a WIM interface, in which users are able to seamlessly switch to a

copy of an occluded room and interact with this copy. Similar to OCE techniques, the

WIM interfaces for AR provide copies of real world objects. However, unlike our interfaces,

these interfaces were designed for head-mounted displays (HMD), not handheld devices.



38 Chapter 2. Background

(a) (b)

(c)

Figure 2.12: Transitional interfaces. Transitional interfaces extend the AR viewpoint by
allowing users to switch to other viewpoints without physically moving. (a) The ego-
centric viewpoint limits the field-of-view of the user in an AR browser. (b) By seamlessly
switching to an exocentric map view, the user gets an overview of the points-of-interest
relative to the current location (Images taken from Mulloni et al. [97]). (c) Transitional
interfaces can also enable users to revisit previously recorded viewpoints (Image adapted
from Sukan et al. [124]).

2.5.2 Multi-perspective Rendering

Multi-perspective renderings are often realized using mirror-like renderings. Bichlmeier et

al. [14] use a mirror to reveal those parts of a table-sized object that face away from the

user. Au et al. [4] demonstrate how mirrored views from a live video facilitate orientation

in urban environments (Figure 2.13(a)). Hoang and Thomas [58] also use live video to

extend the AR view by providing a zoomed view of distant objects to improve interaction

accuracy.

Deformation techniques can also provide additional viewpoints on otherwise occluded



2.5. Extending the Ego-centric Viewpoint 39

(a) (b)

(c)

Figure 2.13: Multi-perspective rendering. Multi-perspective renderings expand the current
viewpoint of the user by showing multiple viewpoints integrated into one rendering. (a)
Additional viewpoints can be integrated using a mirror metaphor (Image adapted from
Au et al. [4]), (b) or by applying deformation techniques to real world objects (Image
taken from Sandor et al. [115]). (c) Panorama renderings also have been used to present
multiple viewpoints in one image (Image taken from Mulloni et al. [98])

structures or structures that are out of view. Sandor et al. [115] deform real world

buildings to enable users to investigate parts not visible from their current viewpoint

(Figure 2.13(b)). Veas et al. [137] seamlessly integrate an exocentric viewpoint into the

egocentric AR view to provide an overview over a large area. While these techniques ex-

tend the egocentric viewpoint, they do not allow viewpoint changes for exploring distant

objects.

Panorama renderings also have been used to extend the viewpoint of the user. Mulloni

et al. [98] evaluate different panoramic representations of the users’ surroundings by letting

them match features in the panorama and the real world (Figure 2.13(c)). In another



40 Chapter 2. Background

paper, Mulloni et al. [97] increase the users’ egocentric field of view (FOV) by zooming in

on a panoramic presentation of the surroundings. The use of a transition to change the

viewpoint of the user also classifies it as transitional interface. This example shows that

the borders between interface categories are blurred. In this thesis, we also combine a

transitional interface with a multi-perspective rendering of an object.

Similarly, the transitional interfaces of Veas et al. [138] and Sukan et al. [124] register

images of the available viewpoints in the real world, thus creating a multi-perspective

rendering, which is similar to our transitional interface. However, their designs are not

focused on exploring a single, real world object of interest, but aimed at communicating

available viewpoints of the environment [138], or manipulating VR content in AR [124].

A major disadvantage of multi-perspective renderings over transitional interfaces is

that the renderings typically do not allow the user to freely change the viewpoint of

the rendering. However, in combination with transitional interfaces, multi-perspective

renderings can be used as overview visualization for further interaction.



Chapter 3

Combining Filtering and View

Management

Contents

3.1 Compact Visualizations . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Hierarchies in View Management . . . . . . . . . . . . . . . . . . 73

3.3 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . 95

AR is a powerful tool to aid the exploration of physical objects. For example, AR

explosion diagrams [74] use three-dimensional displacements to reveal the internal struc-

ture of an object assembly. AR is also frequently used to present textual or pictorial

annotations of real-world objects [61], a technique now commonly used in commercial AR

browsers on mobile phones.

Such AR applications often rely on legacy databases or on crowdsourced content, which

provide a high density of data for popular subjects or locations. Another source of abun-

dant data are image recognition algorithms, which automatically detect objects in videos

and create corresponding information tags. However, augmenting the environment with a

large amount of visual information frequently causes perceptual problems. For instance,

such augmentations may occlude important real-world landmarks, may be occluded by

other objects in the environment, or may cause excessive screen clutter (Figure 3.1).

Hence, filtering techniques are necessary in order to reduce the content of the database

to a manageable amount. A common approach is to use a sequence of filter and layout

algorithms to visualize a reduced set of the data [33]. However, this approach often ignores

the comprehensibility of the resulting layout, because filtering and layout generation are

41



42 Chapter 3. Combining Filtering and View Management

(a) (b)

Figure 3.1: Data overload. (a) Unfiltered augmentations may quickly lead to clutter and
thus decrease the comprehensibility of the resulting visualization. (b) Real world struc-
tures can be annotated automatically by applying object recognition techniques. However,
the generated amount of information is unpredictable and may easily result in an overflow
of augmentations. The application presents all available data including redundant labels,
such as the five labels to the balustrades.

considered in isolation. This can lead to a number of problems:

• Items of the visualization may cluster in one region, thereby competing for optimal

positions and degrading the overall layout. For example, a simple distance-based

filter can reduce the overall amount of objects, but does not consider areas of high

density.

• Ideally, the information density on the screen should be stable and therefore should

not vary when changing the viewpoint. This can only be guaranteed by a view-

dependent filtering approach, which takes into account that the layout should be

temporally coherent.

• Most filters use static selection criteria or greedily pick objects based on priorities.

Such simple selection mechanisms do not guarantee an optimal selection from the

available data. Multiple objects of the same type may be annotated, thus introducing

redundancies, and certain parts may not be annotated at all, leading to information

loss.

We present a filter and layout technique for AR, which follows the information seek-

ing mantra of Shneiderman [119] (overview first, zoom&filter, details-on-demand). Our



3.1. Compact Visualizations 43

approach presents an overview of the available data, which avoids the aforementioned

problems and can be used as a starting point for further interaction.

3.1 Compact Visualizations

Inspired by handmade illustrations such as shown in Figure 3.2, our filter preserves the in-

formation encoded in the visualization by removing only redundant elements and choosing

a representative item for each object class. These representative items are able to show

all object classes without information loss.

Figure 3.2: Illustration of architecture by labeling its elements. Note that from a group
of similar elements, only a single representative is annotated.

We iteratively evaluate the layouts during filtering and reject those that are not sat-

isfying given layout constraints, thereby creating compact visualizations. By dividing the

computations into an offline preparation and an online phase, we are able to deliver opti-

mal compact visualizations in real time even for mobile AR platforms that may not have

access to a large amount of computational resources.

In order to demonstrate the generality of our approach, we apply it to create compact

layouts for explosion diagrams, textual and pictorial annotations, and a combination of

explosion diagrams and annotations.

3.1.1 General Framework

In a typical information visualization pipeline [23], the input data passes sequentially

through stages for filtering and mapping, before the output is presented to the user.

Filtering is responsible for reducing the amount of presented data and then forwards



44 Chapter 3. Combining Filtering and View Management

the filtered data to the visual mapping and then the view transformation stage, which

finally creates a layout of the data. However, the filter has no knowledge about how the

filtering will influence the final layout. The layout algorithm may have difficulties finding

a comprehensible layout for the data, which may be clustered in one region.

Our combined filter and layout approach solves this difficulty by introducing an opti-

mization loop between the mapping and filtering stage. This loop selects new variations of

filtered items in each iteration and evaluates the resulting layout, until a comprehensible

solution is found. The definition of comprehensibility depends on the desired visualization

method. For instance, layouts of annotations must satisfy the condition that annotations

are placed close to the annotated part [57], while in explosion diagrams all exploded parts

must be visible [132].

3.1.1.1 Clustering Redundant Data

Filtering that unconditionally removes items from the input database may lead to unde-

sirable information loss, because not all relevant information is communicated to the user.

In order to avoid such information loss, compact visualizations present a minimal set of

representative items from the database, which faithfully represent the input data.

We determine the minimally required amount of data through clustering the input data

by similarity in a data analysis step. Then, from each cluster, one representative item is

selected to be shown in the layout. Thus, we remove redundant items in the visualization.

For instance, we cluster textual annotations by string comparison or objects in the

video image based on the recognition of object classes. For explosion diagrams, we use a

shape descriptor for identifying similarities in 3D structures.

3.1.1.2 Layout Creation

To generate an optimized filtered layout, we first compute an initial layout, which we

subsequently optimize (Figure 3.3). Both stages consist of a filter module that selects a

single item item from each cluster, the algorithm for creating a layout of the selected items

and finally an evaluation module, which determines the quality of the layout.

Although the structure of the two stages appears to be the same, their purpose and

details differ. In the first stage we determine an initial selection of representatives

from the previously determined clusters. For this purpose, it evaluates the quality of each

single item. After all items have been evaluated, we chose the item with the highest quality

measure from each cluster to be the representative of the respective cluster. To find out



3.1. Compact Visualizations 45

Figure 3.3: General framework for compact visualizations. After clustering the input
data according to redundancies, an initial layout of representatives is created. If the initial
layout is not satisfactory), the representatives are re-selected in an optimization process to
find an interference free layout. Internally, the data passes through (re-)selection, layout
generation and layout evaluation in both the initialization and the optimization phase.
While the initialization iterates over each single item in the clusters, until all have been
processed, the optimization varies the layout by a single representative in the filter stage
for a defined number of cycles.

if the selected representatives influence each other, we create their combined layout and

measure each item’s quality again. If the quality of each representative is the same in

the combined layout as the previously determined quality, the selection and the layout is

optimal and the filtering process is finished. Otherwise, the selection is forwarded to the

next stage for optimization.

The second stage performs the actual layout optimization by iteratively re-selecting

and re-evaluating representatives. Iteratively re-evaluating the entire layout is a time

consuming process. Therefore, in order to optimize the quality of the layout within an

acceptable amount of time, a heuristic optimization method, threshold accepting [34], is

applied. Threshold accepting randomly varies one item of an input configuration in each

iteration to find an optimal solution. The best configuration is then stored. However,

configurations of lower quality are investigated during optimization to escape only locally

optimal configurations. For details on the optimization, we refer to Dueck and Scheuer [34].

To achieve a compact visualization for a certain data type, we have to specialize the

implementation of the clustering, the layout algorithm and the evaluation responsible for

determining the quality of each item and the layout. We define different quality criteria to

achieve comprehensible visualizations, which take into account the structure of the layout.

Moreover, we demonstrate how we can achieve scene-aware layouts (Section 3.1.6.3) and

temporal coherence (Section 4.1) by introducing special quality criteria.

In the following, we demonstrate the general applicability of our framework by spe-



46 Chapter 3. Combining Filtering and View Management

cializing it for different data types and applications. We create compact layouts for an-

notations, which are commonly used in AR for presenting additional information about

the real world. Furthermore, we apply the framework to create compact explosion di-

agrams. Finally, we demonstrate that the modular structure of the general framework

allows for combined optimization of different data types by combining explosion diagrams

and annotations.

3.1.2 Compact Annotations

To create compact annotations, we first annotate real world objects using their registered

virtual counterparts, given as a 3D CAD model. Each part of the model has been assigned

a semantic tag, which we display as annotation. Semantic annotations may consist of text,

icons or images, and can be created either manually or through automated recognition.

The initial layout of annotations is created using the force-based approach of Hartmann

et al. [56] that arranges annotations in image-space.

The clusters of similar annotations, from which the representatives are chosen, are

currently determined by simple text comparison, but could use a more sophisticated match-

ing such as by using a semantic network. In the initialization stage, the layout of each

label is evaluated separately. The layout is determined by the layout algorithm, which

resolves collisions between labels and geometry. Afterwards, the initial layout is created

by combining representative labels from each cluster. We select a representative label from

each cluster depending on the size and visibility of the referred part as well as the distance

to that part. The closer a label Li is placed to the part Pi and the higher the visibility of

this part, the easier it is to understand the relation between label and part [57].

The quality criteria used during the initialization are described in (3.1). The number

of visible pixel NumV isibleP ixel(Pi) of the labeled part is computed by projecting the

part to screen space and, thereby, also considering occlusions from other scene elements.

NumTotalP ixel(Pi) refers to the total number of pixels after projection to screen space,

without considering occlusions. We introduce weight parameters wd, wv and ws to control

the impact of anchor point distance, visibility and size of the annotated part on the quality

of the label.



3.1. Compact Visualizations 47

QLabeli = wd ·
|Position(Li)− Position(Pi)|

√

ImageWidth2 + ImageHeight2

+ wv ·
NumV isibleP ixel(Pi)

NumTotalP ixel(Pi)

+ ws ·
NumTotalP ixel(Pi)

ImageWidth · ImageHeight

(3.1)

(a) (b)

Figure 3.4: Compact Annotations. (a) Similar items have been clustered and represen-
tatives have been selected from each cluster. This allows us to reduce the amount of
augmentations, while still presenting an annotation to each available object class. In ad-
dition, our system allows to control the selection of representatives according to design
rules. In this case, we select those annotations which most evenly distribute around the
house. (b) After filtering the data, only a few labels remain. They have been spread over
the image plane to avoid interferences with other labels during camera motion.

In the optimization phase, the layout algorithm additionally resolves overlapping

labels and leader line intersections. Thus, the optimal positions of the labels computed

during the initial stage may change. To keep the mutual influence of labels to a minimum,

the initial layout is refined during the layout optimization by selecting and re-evaluating

different representatives. Furthermore, Hartmann et al. [57] suggest that labels should be

placed at similar distances. Therefore, for each pair of labels, which are direct neighbors

on the bounding geometry of the annotated geometry, we compute their distanceD(i, i+1)

and compare it to an estimated optimal distance Dopt between labels, which is defined by

the projected bounding box dimensions of the geometry (Dimx, Dimy) and the number



48 Chapter 3. Combining Filtering and View Management

of labels to be placed. Dopt assumes a layout, where labels are placed at the periphery of

the annotated assembly.

D(i, i+ 1) =
|Position(Li)− Position(Li+1)|
√

ImageWidth2 + ImageHeight2

Dopt =
1
n
· 2 · (Dimx +Dimy)

√

ImageWidth2 + ImageHeight2

(3.2)

We estimate the quality of the entire layout (3.3). Adjusting the weights wd, wv and

ws in combination with the weight wl allows us to balance the quality of a single label

versus the quality of their distribution within the layout.

QDistance =
1

n

n−1
∑

i=1

1− |D(i, i+ 1)−Dopt|

QLayout =
1

n

n
∑

i=0

QLabeli + wl ·QDistance (3.3)

Figure 3.4(a) shows the compact visualization of the annotations of the house from

Figure 3.1(a). The redundant annotations have been removed, and only a minimal set of

annotations remains, which refer to visible parts of the house. Note how these annotations

are distributed around the house.

The selection strategy of the filter can be constrained to enforce certain layout styles.

One strategy may group labels to annotate the same sub-structures and thus create an

“annotated example” pattern. Thus, when the algorithm chooses representatives from the

clusters “sashes” and “tiles”, these representatives must refer to the same window. Al-

though the selection is restricted, the optimization process distributes annotations around

the object and also chooses visible parts as representatives.

AR applications can also use databases that are the result of automatic processing, such

as image segmentation and recognition, or that are created by crowdsourcing. Compact

visualizations can be employed to handle this growing amount of data. In Figure 3.1(b)

object classes are recognized automatically in a visual search task and converted into

annotations. Without filtering the annotations, the displayed data leads to clutter in

complex environments. We can easily adapt the approach of compact annotations to



3.1. Compact Visualizations 49

handle such cases.

Within each cluster of an object class, we rank objects based on their screen size,

estimated by a 2D bounding box. To avoid clustering of annotations in the video image,

the optimization distributes the annotations over the image (Figure 3.4(b)).

3.1.3 Compact Photo Collections

Recent AR browsers allow exploring geo-referenced photographs. In this section, we show

how our approach can control the clutter resulting from an overload of images (Fig-

ure 3.5(a)).

(a) (b)

Figure 3.5: Compact Photo Collections. (a) Geo-referenced photographs are displayed
as billboards in their respective location. The unfiltered pictures clutter the display and
occlude the displayed landmarks. (b) Our compact visualization algorithm clusters pho-
tographs based on their visual similarity and spatial proximity. The clutter is reduced by
selecting representative images from the detected clusters.

Clustering. We assume a database of images tagged with GPS coordinates. Images are

clustered by identifying similar content using the algorithm described by Li et al. [86],

giving one cluster CLi
per landmark. Using the GPS tag (i. e., the camera position) of the

image relative to the GPS position of the landmark, we determine the orientation of each

image. Within a landmark cluster, sub-clusters COj
with similar orientation are computed

using k-means [89].

Initialization Stage. Since a single image requires a rather high amount of screen-

space, we show only small and simple icons at the location of each visible landmark. We



50 Chapter 3. Combining Filtering and View Management

furthermore allow the user to select one of the icons in order to query the images associated

with the corresponding landmark.

For each landmark, we present representative images to its left and right in screen

space (Figure 3.5(b)). These are selected from the orientation sub-clusters COj
based on

their distance from the landmark. Images taken from a distance similar to the current

distance of the user to the landmark are ranked higher than those which are further away

or closer to the landmark.

Optimization phase. To evenly distribute representative images around a selected

landmark, the differences between orientations of representatives are considered. We dis-

tribute representatives as evenly as possible around the object using the quality measure

presented in Equation 3.4.

QualityDistributionj =
numLabels−1

∑

i=1

Anglei−1,i −Anglei,i+1

(3.4)

3.1.4 Compact Explosion Diagrams

Compact visualizations can also be created for explosion diagrams. Explosion diagrams

are a powerful visualization that allow for comprehensible renderings of three dimensional

objects. While other illustrative exploration techniques, such as cutaways [85] or ghost-

ings [72] remove parts from the presentation, explosion diagrams present all parts entirely

opaque and with full detail, by displacing the elements of an objects. These displacements

are carefully designed to encode the assembly of the object. Artists are trained to in-

tuitively choose comprehensible arrangements of parts. In computer science, algorithms

have been investigated to compute the layout of an explosion diagram automatically. For

example, the current state-of-the-art algorithms define relations between parts, which are

subsequently used to control their displacement [1, 83].

However, similar to crowdsourced annotations, automatically generated explosion dia-

grams of complex objects can easily suffer from cluttered layouts. While artists intuitively

decide which parts of a complex explosion diagram are really necessary, computer graphics

applications have to resort to user interaction to control the complexity at runtime [83].

Such interaction requires a certain effort, which increases with the complexity of the 3D

model. In addition, traditional media, such as textbooks, do not allow interaction with the



3.1. Compact Visualizations 51

Figure 3.6: Handmade compact explosion diagrams. The assembly of the entire model is
presented by a set of representative exploded views only (Adapted from [94]).

presentation at all. Illustrations targeted for non-interactive media still need to present

the entire assembly of an object.

Inspired by handmade illustrations showing explosion diagrams, such as the one in

Figure 3.6, we reduce the complexity of an explosion diagram by rendering an exploded

view only for a subset of the assemblies of an object using our compact visualization

approach. The exploded views are chosen so that they allow inferring the remaining

unexploded assemblies of the entire 3D model. Note how the illustrator of Figure 3.6 uses

a selective displacement multiple times to render a more compact explosion layout.

3.1.4.1 System Overview

Using the framework for compact visualizations, we can create explosion diagrams that

mimic the layout techniques presented in Figure 3.6. The process for creating explosion

diagrams is very complex. Therefore, we provide a short system overview in this section.

Figure 3.7 illustrates the main modules of our system, which are used to render a compact

explosion diagram from a single point of view. The following sections contain more detailed

descriptions.

Initially, an input assembly is fully exploded (Figure 3.7(A)) using the method de-

scribed in Section 3.1.4.3. The presented method identifies similar parts of the assembly

by employing the shape descriptor of Vranic [140] and ensures that these similar parts

are exploded in similar ways. By performing a frequent subgraph search [151] on a graph

representation of the assembly, which incorporates similar parts, we are able to extend the



52 Chapter 3. Combining Filtering and View Management

Figure 3.7: System architecture for creating compact explosion diagrams. The system
for creating compact explosion diagrams system consists of three different modules which
affect the rendering of compact explosion diagrams. By supplying a 3D CAD model, the
system automatically computes an initial explosion layout (A), finds groups of equal parts
(B) and selects a representative (C), before it initiates the rendering.

similarity measure from single parts to similar subassemblies (Figure 3.7(B)).

In general, the creation of the explosion layout (Figure 3.7(A)) and finding similar

subassemblies (Figure 3.7(B)) are independent operations. Therefore, their detailed de-

scriptions are separated into different sections. However, we incorporated the detected

subassemblies into the explosion layout generation, to ensure that not only similar parts,

but also similar groups of parts, are exploded in a similar way. See Section 3.1.4.3 for a

detailed discussion on the modification of the initial layout algorithm and on the variations

on using and creating similar groups.

Using the compact visualization optimization, we select representatives from the set of

similar groups (Figure 3.7(C)), depending on a quality evaluation of its potential exploded

view, including parameters such as their visibility, their size after 2D projection and the

angle between explosion direction and the view vector (Section 3.1.4.4). Moreover, our

system takes into account visibility information of the remaining unexploded assemblies.

This allows rendering a balanced compact explosion diagram, consisting of a clear pre-

sentation of both the exploded representatives and the unexploded remaining assemblies.

Since representatives may interfere with one another, the compact visualization framework

optimizes combinations of representatives using the approach of threshold acceptance.

3.1.4.2 Clustering Redundant Assembly Groups

We determine sets of similar subassemblies by performing a frequent subgraph (FSG)

search on a graph representation of the assembly. Our approach is based on the gSpan



3.1. Compact Visualizations 53

algorithm of Yan and Han [151], which uses depth-first-search (DFS) codes to differenti-

ate between two graphs. A DFS code describes the order in which parts of a subgraph

have been visited. Two graphs are isomorphic if their DFS codes are equal and if their

corresponding node labels (which represent the parts) match. By using DFS codes and

node labels, the implemented FSG algorithm finds non-overlapping sets S = {G1, . . . , Gk}

of the largest subassemblies G contained in the graph.

Graph Representation of Assembly The FSG requires the 3D model to be repre-

sented as a graph Ag, which contains all parts P = {p1 . . . pn}, with n being the amount

of parts in the assembly. The parts of the assembly pi (with i = 1 . . . n) are mapped to an

equal number of nodes of the graph. Undirected edges are created between nodes, if their

corresponding parts are in contact.

Nodes of parts, which are similar to each other, receive the same label. We detect

similar parts by exploiting the DESIRE shape descriptor of Vranic [140]. The descriptor

computes a feature vector for each part which we use to compare their shapes with.

We consider two parts as being similar, if the l2-distance of their corresponding feature

vectors falls below a certain threshold and if the part sizes match. The result of the part

comparison is a list of disjoint sets of similar parts Ps = {pg, . . . , ph}, for g 6= h, and

g, h ≤ n, which is used to label the nodes of the graph Ag.

Frequent Subgraph Mining Input to the algorithm is the whole graph Ag. Initially,

all nodes having a label which occurs only once in the graph are removed. These nodes

represent parts for which no similar parts exist (|Ps| = 1). For each remaining set of similar

parts Ps, one set S0 is created, containing |Ps| number of groups G0, each containing a

single part p ∈ Ps. The sets S0 define the nodes at which the FSG search will start

execution.

A recursive FSG mining procedure is applied on each of the sets S0 and iterates through

all input groups Gi of an input set Si, in order to grow the groups Gi to create similar

groups of parts. In each iteration, a different group Gi is chosen from Si to be the reference

group Gr. For the current group Gr, the set of neighbors Nr is retrieved for the node which

was added last to the group Gr. If all neighbors of the node added last have been processed,

the neighbors of the previously added nodes are chosen. If all neighbors have been visited,

the group Gr cannot be extended further.

For each Gi 6= Gr, the neighbors ni similar to the ones in Nr are determined. Neighbors

ni are similar to each other if their labels and number of contact parts to the corresponding



54 Chapter 3. Combining Filtering and View Management

group Gi are equal to the ones of the neighbor nr. Furthermore, the DFS codes and labels

of the contact nodes contained in the groups must be equal. This similarity measure

ensures that the found groups contain nodes which have been visited in the same order

and which have equal relations to their neighbors. After identifying similar neighbors for

at least two groups Gi and Gj during the same iteration, a new set Sn is created. The

new set contains the groups Gn1 = Gi ∪ ni and Gn2 = Gj ∪ nj , which are the original

input groups extended by the similar neighbors. All groups for which similar neighbors

exist are extended in the same way. Note that, for each set of similar neighbors, a new

set of groups is created, and these groups differ only by one part from the groups of Si.

Hence, by recursively calling the mining procedure on the new sets, a DFS is performed,

growing these groups further.

All groups Gi which have been extended by a neighbor are removed from the input

set Si, because these groups are then part of larger groups Gn. If |Si| ≤ 1 for a set Si, all

groups were extended, and the set is deleted. However, the mining algorithm is applied

again to any parts left in the set Si (if |Si| = 1) to eventually extract smaller similar

groups.

The FSG mining returns with the sets Sout of largest similar groups Gout. If the sets

Sout do not overlap, the algorithm is finished. Otherwise, overlapping output sets must be

resolved by keeping only one of the overlapping sets Sout and applying the FSG again to

the set of Ag \Sout. This operation is repeated for all results, until the output sets Sout do

not overlap anymore. The decision on which of the overlapping groups is kept is based on

the following rules. We keep the one overlapping set, which contains the groups holding

the most number of parts. If this measure is ambiguous, the set having the most groups

is preferred. If this is still ambiguous, the one containing the largest part is chosen.

3.1.4.3 Layout Initialization

The layout of an explosion diagram depends on the removal direction and distance chosen

for each part, which set it apart from its initial position. To reduce the mental load to

reassemble an exploded object, explosion directions often follow mounting directions, so

collisions between displaced parts are avoided. Explosion diagrams implement this feature

by introducing relations between the parts of an assembly. For example, each screw in

Figure 3.7 moves relative to the purple cylinder, which it fastens. By displacing one of

the purple cylinders, the corresponding black screws will be displaced implicitly.

The relationships between parts of an explosion diagram also allow parts to follow



3.1. Compact Visualizations 55

(a) (b)

Figure 3.8: Different relationships between parts results in different layouts of the explosion
diagram. (a) The stacks of parts to the left and the right in the back of the car have been
related to the seat. The wheels in the front of the car follow the blue steering gear. (b)
The front wheels have been related to the base-plate of the car, as have been both purple
elements, which connect the wheels in the back to the car.

related parts. This enables a part to move relative to its initial location in the assembly,

which also reduces the number of mental transformations to reassemble the object. For

example, note how the grey bolts follow the green gearbox in the explosion diagram in

Figure 3.7. However, it is often not obvious which part represents the initial location of

another part best. For example, while the initial locations of the black screws in Figure

3.7 are clearly defined by the holes of the engine they fasten, the initial location of the

wheels in Figure 3.8 is surrounded by a number of parts. As demonstrated in Figure

3.8(a), the wheels in front of the car may follow the blue steering gear. This will result

in a translation along the up-vector of the car, before the wheels explode along the x-

directions of the model’s coordinate system. In contrast, the explosion diagram in Figure

3.8(b) uses a relation between the wheels in the front of the car and the green base-plate.

This results in a displacement of the wheels without a translation along the up-vector of

the coordinate system. The same behavior appears for a stack of parts in the back of the

car. Since, in Figure 3.8(a), the parent of the stack follows the red seat of the car, all the

parts between the wheels and the seat have been moved along the up-vector, before they

have been separated from each other. In contrast, the explosion diagram in Figure 3.8(b)

uses a relationship between the parent of the stack and the green base-plate of the car,

which reduces the number of translations of all the elements in the stack.

We define relations between parts by computing a disassembly sequence. A relationship



56 Chapter 3. Combining Filtering and View Management

is set up between each exploded part and the biggest part in the remaining assembly it

has contact with. To avoid collisions between exploding parts, the directions in which a

part can be displaced are restricted to only those in which a part is not blocked by any

other parts. This implies that the algorithm displaces parts which are unblocked in at

least one direction, before it is able to explode parts which are blocked in all directions.

Thus, by removing the exploded parts from the assembly, we gradually remove blocking

constraints, which allows us to explode previously blocked parts in a subsequent iteration

of the algorithm. Since the algorithm gradually removes parts from the assembly, the

set of directions for which a part is not blocked (and thus the set of potential explosion

directions) depends on the set of previously removed parts. Consequently, the disassembly

sequence directly influences the set of potential explosion directions.

(a) (b) (c)

(d) (e) (f)

Figure 3.9: Different disassembly sequences may result in different layouts. The sequence
is labeled in red. The resulting explosion diagram is illustrated in the image on the
right. (a,b,c) The computed sequence is based on previous approaches, which select parts
depending on the distance a part has to be moved to escape the bounding box of the
remaining assembly. The bounding boxes of the remaining parts have been framed in red
and green. (d) We compute the next element in the sequence based on a comparison with
the previous one. (e) By removing similar parts in a row, we ensure that the remaining
assemblies contain the same elements, except for one part which is similar to the next
one. (f) This strategy allows us to explode similar parts within similar conditions, which
in turn results in more similar exploded views of similar subassemblies.



3.1. Compact Visualizations 57

Disassembly Sequence. Previous approaches [1, 83] compute a sequence depending on

how fast a part is able to escape the bounding box of the remaining parts in the assembly.

However, since this approach does not comprise any information about the similarity

between exploded parts, the resulting explosion layout does not ensure similar exploded

views for similar assemblies. Consequently, we encode information about the similarity of

the parts in the sequence. We remove similar parts in a row, starting with the smallest.

If no similar part can be removed from the assembly, we choose the current smallest part.

This strategy enables us to set up relationships which subsequently allow smaller parts

to follow bigger ones during explosion. Take note that, by computing a larger amount of

similar explosion layouts, our system is able to choose a representative exploded view out

of a larger set of similarly exploding assemblies.

Figure 3.9 demonstrates the difference between previous approaches and our new strat-

egy to find a disassembly sequence. A sequencing based on a bounding box intersection is

demonstrated in Figures 3.9(a) to 3.9(c). The algorithm first removes part A, before part

B and part C will be exploded. By using this strategy, relationships between part A and

part B and, subsequently, between part C and part B will be set up. The resulting explo-

sion layout is illustrated in Figure 3.9(c). As can be seen, different explosion directions

have been assigned to the similar parts B and C.

In contrast, our algorithm computes a sequence which is based on a comparison of the

previously exploded part and all removable part in the remaining assembly. As demon-

strated in Figures 3.9(d) to 3.9(f), our strategy will result in a sequence which supports

similarly exploded views of similar assemblies. Both parts B and C have been displaced

in the same direction, and both parts have been related to the same part in the remaining

assembly (part A).

Relationships. Both strategies in Figure 3.9 set up relationships between the current

part and the bigger one. However, since our sequence removes similar parts one after

the other, the remaining assemblies are identical for similar parts, with the exception of

the previously removed part (which is similar to the current one). Since almost identical

conditions exist for similar parts, our algorithm is able to set up similar relationships for

those parts and the parts in the remaining assembly.

In addition to the initial assignment of relationships between parts, we change the

relationships for penetrating elements in a stack. For example, the black screws in Figure

3.7 have contact with the purple cylinder and the green gearbox. Since the green gearbox

is the bigger item, the initial relation is set between a screw and the gearbox. However,



58 Chapter 3. Combining Filtering and View Management

this would result in an explosion diagram in which the screws follow the gearbox instead

of the purple cylinder.

To handle such cases, we identify stacks of parts by searching for the elements which

are located between the exploded part and the one it is related to. If parts exist in-between

and if these parts share an explosion direction with the currently removed part, the initial

relationships are changed so that the exploded part is related to the closest part in the

stack of parts in-between.

Explosion Directions Previous approaches compute the explosion direction of a part

out of a set which contains only the six directions along the three main axes of the model

[1, 74, 83]. However, this approach is very limited (e.g., consider the differences in direc-

tions in the explosion diagram in Figure 3.7). Therefore, we compute a non-directional

blocking graph, similar to the algorithm proposed by Wilson [147], by computing blocking

information between all pairs of parts. For each exploded part, we determine the set of

unblocked directions by removing all blocked directions from the set of exiting 3D direc-

tions. We represent all directions by a unit sphere, and we remove blocked ones by cutting

away the half sphere with a cutting plane which is perpendicular to the direction of a

blocking part. By iteratively cutting the sphere, using all locking information from parts

in contact with it, the remaining patch of the sphere represent all unblocked directions for

a part. Thus, we output the center of gravity from the remaining patch of the sphere.

Explosion Distance. Visually similar parts should be moved by a similar distance to

create a visually coherent explosion diagram. Since similar parts appear to be similarly

large, we set the distance of displacement from the parent part to be proportional to the

size of the exploded part. Nevertheless, since a linear mapping may easily result in overly

large displacements, we introduce a non-linear mapping using equation 3.5.

Distance = SizeOfPart · (1− k ·RelativeSize2) (3.5)

For parts which cannot be removed at all, we compute a distance for which they can

be moved until colliding with other parts. For example, the lower purple cylinder in

Figure 3.7 cannot be removed before the black screws have been removed. However, the

black screws will collide with the cylinder they fasten, if we explode them into a single

direction. Nevertheless, we can explode the screws a certain distance, before they collide

with the cylinder. Since this distance is sufficient to reveal the screws, we compute the



3.1. Compact Visualizations 59

maximal distance they can be exploded. We explode the screws to a distance smaller than

this maximal distance and are further able to subsequently explode the cylinder from the

assembly.

We compute the maximal distance that a globally locked part can be moved by ren-

dering both parts - the one which is about to be removed and the one which blocks its

mounting direction - into a texture. We position the camera at the vector along the

explosion direction to point at the exploded part. In a vertex shader, we use the cur-

rent model-view transformation matrix to transform each vertex into camera space. The

corresponding fragment shader finally renders the location of each fragment in camera

coordinates into the textures. By calculating the difference between the texture values,

we get a map of distances between the fragments of both parts. The maximal distance by

which a part can be removed, before it collides with the blocking part, is finally represented

as the smallest difference between the values in the texture.

Group-Based Layout. Our system calculates similar subassemblies independently of

the initial layout of the explosion diagram. However, even though our sequence generator

specifically supports similar exploded views of similar subassemblies, if their neighborhoods

differ, the exploded views may be different. For example, the model in Figure 3.10(a)

consists of one set of four similar subassemblies (marked by the green rectangle). Each

of them contains two parts. Figure 3.10(b) shows its explosion diagram, in which each

single part has been displaced. As can be seen from the initial layout, the exploded view

of the subassembly in the lower right corner is different from the explosions of the other

subassemblies. If we choose this exploded view as the representative of its set of similar

subassemblies, the resulting compact explosion diagram lacks a presentation of the other

subassemblies of this set (Figure 3.10(c)).

To prevent representatives which explode differently to other similar subassemblies,

we can adjust the sets of similar subassemblies in a way that only similarly exploding

subassemblies will be grouped together. Therefore, we use the layout information to

modify the identification of similar subassemblies. Only those parts of the assembly are

candidates for extending a group which would set up a relationship to another part in the

subassembly. Figure 3.10(d) shows the result of this restriction. This strategy finds a set

of only three, instead of the previously identified four, similar subassemblies (marked in

green). Consequently, fewer subassemblies will be presented assembled, which results in a

layout which is not as compact as in the previous case.

In order to create a more compact explosion layout, without risking to choose a repre-



60 Chapter 3. Combining Filtering and View Management

(a) (b) (c)

(d) (e) (f)

Figure 3.10: Explosion Layouts containing group information. (a) Groups have been
created independently from the explosion layout. (b) Therefore, the explosion layout does
not take information about similar subassemblies into account. This may generate different
exploded views of similar subassemblies. (c) If we select a representative from a set of
similar subassemblies which do not explode the same way, the explosion does not represent
all other subassemblies. (d) By recalculating group information from the layout, the
number of similar groups is reduced, which results in more exploded views. (e) Therefore,
we modify the initial layout so that similar subassemblies explode in a similar way. (f)
This strategy allows us to choose a representative from a larger set of subassemblies, which
in turn reduces the amount of required exploded views to demonstrate the assembly.

sentative which does not demonstrate the composition of other similar subassemblies, we

modify the layout of the explosion diagram instead of the information about the similarity

of subassemblies. As illustrated in Figure 3.10(e), we aim to modify the layout to prevent

relationships with parts outside the subassembly. We allow only one relationship between

a part in the subassembly and the remaining 3D model.

This is similar to the approach of Li et al. [83], who explode a manually defined group of

parts as if it was a single element in the assembly. However, we use a different approach to

handle interlocking groups. Rather than splitting a subassembly, we ignore blocking parts.

This allows us to keep subassemblies connected. Note that this could be at the cost of

explosion diagrams which are not completely free from collisions. Nevertheless, we believe



3.1. Compact Visualizations 61

that preventing such collisions is less important for the final compact explosion layout

than a larger amount of explosions or a representative which does not demonstrate the

composition of its associated subassemblies. In the case of a compact explosion diagram, it

is more important to select a representative from a rather large set of similar subassemblies,

which additionally all explode in a similar way.

Thus, we compute an explosion diagram which ensures similar explosion layouts of

similar subassemblies as explained before. However, for each part p, we determine if it is a

member of a subassembly G which occurs multiple times in the model. If the algorithm is

about to explode a part p which is a member of G, we choose a representative part pr out

of G, which we explode instead of p . We define pr as the biggest part in the subassembly

G which has at least one face in contact with at least one part of the remaining assembly,

not considering other parts of the subassembly. In addition, the representative part pr has

to be removable in at least one direction without considering blocking constraints of parts

of the same subassembly.

Even though pr influences the explosion direction of the entire subassembly, we may

not set the relationship between pr and a part out of the remaining assembly. Since we

are only able to explode each part once, and since we want to further continue to explode

all frequent subassemblies in the same way, we have to choose the same part in each

subassembly to set up the relation to the remaining assembly. Moreover, since we want

to explode subassemblies using the guidelines presented before in this section, we want to

explode the small parts before the bigger ones. Therefore, we choose the biggest part in

the assembly as the main part of the assembly, and we relate it to the biggest part in the

remaining assembly which the subassembly has contact with.

3.1.4.4 Layout Optimization

Following the idea of compact visualizations as presented in section 3.1.1, after identify-

ing frequent subassemblies and after computing an initial explosion layout, we create a

compact explosion diagram by displacing only one representative group out of a set of

similar groups. We compute the impact of a representative subassembly on the explosion

diagram by calculating its quality as the weighted sum of a set of measurements. Since the

combination of representatives may influence the quality of a single subassembly, we need

to optimize the selection by optimizing the selection of representatives. In the following,

we will first describe the parameters for rating the impact of a subassembly, before we

present our approach to combine representatives to the final compact explosion diagram.



62 Chapter 3. Combining Filtering and View Management

(a) (b)

Figure 3.11: Local Footprint. (a) Putting emphasis on the footprint of the exploded
representatives renders them in the foreground of the presentation. (b) In contrast, by
putting emphasis on the footprint of the unexploded parts, the exploded representatives
are shown in the background.

(a) (b)

Figure 3.12: Direction versus Size of Footprint. (a) The size of the footprint by itself
does not ensure a clear presentation of the explosion. (b) By scaling up the importance
of the angle between the viewing direction the explosion direction, we are able to choose
a representative which better demonstrates the explosion of the subassembly.



3.1. Compact Visualizations 63

Quality Measurements. We define the quality of a group of parts as a combination

of several measurements. Therefore, for each group, we render its local explosion (which

displaces only the parts of the group and parts which block the group), and we compute

the following values:

• Size of footprint of the exploded group. The size of the footprint f describes the size

of the projected area of a part of the object in screen space.

• Size of footprint of all other similar groups without any displacements. The size of

the footprint of the parts of other subassemblies fr describes how big similar, but

unexploded subassemblies will be presented.

• Explosion directions relative to current camera viewpoint. Assuming that explosions

which are similar to the viewing direction are more difficult to read than those which

explode more perpendicularly to the viewing direction, we compute the dot product

a between the viewing vector and the explosion direction for each part. The average

value a is used for a group of parts within a subassembly.

• Visibility of parts of the exploded representative. The visibility v is a relative measure.

By counting visible pixel of a part and those which are hidden, we compute its

percentage of visibility from the current point of view.

Qr = f · fc + v · vc + (1− a) · ac + fr · frc (3.6)

The final quality Qr of an exploded view of a subassembly consists of the weighted sum

of these values (see Equation 3.6). The weights (fc, vc, ac, frc) indicate the importance

of each single parameter to describe the quality of the group. By differently scaling these

parameter, we are able to control the final presentation. For example, the Figure 3.11

shows two compact explosion diagrams generated with different intensions of the user.

The compact explosion diagram in Figure 3.11(a) puts emphasis on the representative

explosions, while it simultaneously shows similar subassemblies in the background as con-

textual information. In contrast, the image in Figure 3.11(b) presents the assembled parts

of the compact explosion diagram in the foreground, while the exploded representatives

are used to fill in contextual area. Both graphics were rendered by scaling up a single

weight. While Figure 3.11(a) scales up the impact of the size of the footprint of the rep-

resentatives, Figure 3.11(b) was generated by increasing only the values of the impact of

the footprint of non-representatives.



64 Chapter 3. Combining Filtering and View Management

Even though the footprints of both the representatives and the unexploded elements

are important parameters to compact explosion diagrams, they may fail to create easily

comprehensible presentations. The explosion diagram in Figure 3.12(a) was rendered with

a high impact of the footprint of representatives. However, such scaling by itself turns out

to be insufficient from certain points of view. The explosion indicated by the red arrow

is almost hidden. A more informative explosion diagram from the same point of view is

shown in Figure 3.12(b). The presentation scales up the impact of the angle between the

view vector and the average direction of explosion for each representative.

Nevertheless, a high impact of only the explosion directions leads to self occlusions

which again may hinder the understanding of the final presentation (Figure 3.13(a)). As

demonstrated in Figure 3.13(b), by putting emphasis on the visibility of representative

parts, the system chooses a different one to explode. However, even if self-occlusions are

avoided within a single representative, global occlusion between different representatives

cannot be controlled by this parameter (Figure 3.14(a)).

As the examples in Figures 3.11 to 3.13 demonstrate, there is no universal rule on

which parameter we have to scale up or down in order to ensure comprehensible compact

explosion diagrams. However, the weights can still be used to direct the rendering towards

the user’s intention. The quality of the entire compact explosion diagram can only be con-

trolled by taking combinations of explosions of representatives into account. By estimating

the quality of an explosion of subassemblies independently from other explosions in the

diagram, interdependent explosions and visual overlaps of representatives may change the

quality of a representative explosion.

Optimization. Finding the optimal representative for one set of similar groups, as

shown in the previous examples, does not ensure that the representative stays optimal

when representatives of other groups are exploded. Exploded groups may interfere with

each other and, therefore, decrease the quality of other representatives. In Figure 3.14(a),

the representative groups are locally optimal when only these groups are exploded for

themselves. However, combining all locally optimal representatives into one explosion

significantly decreases the overall layout quality.

To avoid interferences of representatives with each other, we search for an optimal

combination of exploded groups, using the idea of threshold accepting, as described in

section 3.1.1.2. In each step of the algorithm, the quality of a combination of represen-

tative explosions is evaluated by computing the sum of their scores after exploding all

of them. The initial layout consists of exploded representatives with the highest local



3.1. Compact Visualizations 65

(a) (b)

Figure 3.13: Visibility. (a) If the visibility of the parts of an explosion are not taken into
account, parts of a representative may occlude each other. (b) The visibility evaluation of
representatives is able to resolve self occlusions.

(a) (b)

Figure 3.14: Global Visibility. (a) Adding weight to the local visibility does not resolve oc-
clusions between different representative groups. (b) Optimizing the layout using threshold
accepting ensures that the overall visibility and, thus, the layout quality is maximized.



66 Chapter 3. Combining Filtering and View Management

scores. Therefore, if the sum of their local scores is equal to the global score, the local

representatives are global representatives too. Consequently, we do not search further for

a better combination. However, if the global score is less than the sum of local scores, we

change the initial layout by a single representative group and re-compute the global score

of the modified layout. If the score of the changed layout is higher than the current best

finding, this new one is used as the current best combination of representatives. Therefore,

if the new score is equal or less than the current best score, we do not consider the current

combination to be displayed. However, even if the current score is less than the best one,

we compute the next tested layout based on the current one, if its difference to the best

score is less than a threshold value. Otherwise, we modify the layout which the current

layout was computed from. While the algorithm progresses, the threshold value decreases,

which gradually allows better layouts to be the starting point for further changes.

Figure 3.14(b) shows the results of optimizing the locally scored compact explosion

diagram presented in Figure 3.14(a). Since representatives in Figure 3.14(a) overlap each

other, a different subassembly has been selected in the optimized compact explosion dia-

gram in Figure 3.14(b).

3.1.5 Combined Optimization of Data Types

(a) (b)

Figure 3.15: Combined Optimization. Compact visualizations of different data types
can also be combined. (a) A combination of annotations and explosion diagram can
result in a large amount of clutter. (b) Our approach avoids this situation by combining
the optimization of compact annotations and explosion diagrams. Clutter is reduced by
exploding and labeling only representative parts of the airplane.

Until here, we created compact visualizations for different data types separately: an-



3.1. Compact Visualizations 67

notations, photographs and 3D assemblies. However, the modular architecture of our

approach allows to easily combine different visualizations types. Figure 3.15(a) shows

a visualization, which uses an explosion diagram to present the structure of a firefighter

plane and annotations to denote its parts. While the visualization suffers from information

overflow, the one in Figure 3.15(b) demonstrates the corresponding compact annotated

explosion diagram.

The combined visualization is achieved by sequentially executing the specializations

for compact explosion diagrams and annotations. The explosion diagram changes the

layout of the parts, which define the anchor points of the labels, but is not influenced by

the annotations. Therefore, to avoid changes to the optimized layout of annotations, it is

mandatory to optimize the layout of the explosion diagram, before optimizing the layout

of annotations.

3.1.6 AR Challenges

In order to make compact visualizations suitable for AR, they have to be able to han-

dle dynamic scenes with a moving camera. Therefore, the visualization must run within

interactive frame rates and have guaranteed real-time performance. This is especially

challenging when compact visualizations are deployed on mobile devices with limited pro-

cessing and battery power. Furthermore, the small display of a handheld device only

provides a limited amount of screen space for visualizations. In addition, compact visu-

alizations must take into account the real world environment to avoid interferences with

real content.

In the following, we present methods for creating compact visualizations which deal

with these issues. The discussed solutions make use of the modular structure of our

framework for easy integration.

3.1.6.1 Interactive Framerates

The performance of the optimization for compact visualizations mainly depends on the

complexity of the input data and the involved mapping and evaluation modules. For

instance, the computation of a compact explosion diagram is computationally intensive,

because of the costly pixel-accurate visibility estimation and the number of iterations spent

in optimization. The visualization in Figure 3.15(b) took about 30 seconds on an 2.67GHz

Intel Core i7 processor.

The performance of the optimization process can be improved by tuning the algorithms



68 Chapter 3. Combining Filtering and View Management

and reducing the number of iterations. However, a lower number of iterations may lead

to lower quality visualizations. Additionally, when the complexity of the input assem-

bly increases, the performance of the optimization decreases. Interactive frame rates for

creating compact visualizations cannot be guaranteed for all cases and even less so when

considering mobile hardware with limited CPU and battery power.

To guarantee real-time performance, we prepare compact visualizations from a finite

number of viewpoints. At runtime, we present the prepared layout which is closest to the

current point of view of the user. To facilitate the tracking of layout changes for the user,

the changes between layouts are animated over time.

Figure 3.16: Prepared optimal layouts. We precompute the best compact explosion dia-
gram from a finite number of viewpoints, enabling real-time layout updates by animating
between layouts from neighboring viewpoints.

Figure 3.16 depicts different compact explosion layouts calculated using this approach.

The animation between the viewpoints simultaneously collapses and expands obsolete and

new representative elements, which were prepared for given viewpoints. Similarily, the

transition between different compact annotation layouts is performed by changing the

anchor points of the annotations and animating their movement to the new location.

We provide optimized compact visualizations for a discrete set of viewpoints by sam-

pling them from a bounding sphere surrounding the object of interest. A virtual camera is

placed at each sample point and oriented towards the center of the sphere. To cope with

layouts of different dimensions, we adapt the distance of each camera to the center of the

sphere so that the visualization fits into the viewport as tightly as possible. At runtime,

the distance of the camera to the object center is given by the user, and the viewport may



3.1. Compact Visualizations 69

not be centered on the object. According to our observations, these errors can be ignored

in practice.

3.1.6.2 Minimizing Layout Dimensions

Up to this point, we have not explicitly considered the limited screen estate of a mobile

device in the optimization of compact visualizations. In the following, we present a quality

measure which allows us to optimize visualizations for minimal dimensions.

(a) (b)

Figure 3.17: Minimally extending compact explosion diagram in AR. (a) The explosion
diagram of the assembly requires a large amount of screen space. The most comprehensible
explosion diagram and its screen space bounding box shown in red (b) By incorporating the
size of the screen aligned bounding box during optimization, we can compute a minimally
extending compact visualization (green). Note the difference between the bounding box
dimensions.

To keep the dimensions of the layout as small as possible, we compute the size of the

screen aligned bounding box during optimization, more precisely, its diagonal Diag2d,exp.

This estimation is then incorporated into the quality estimation of the layout as additional

quality parameter QExtension. As a result, the quality of the layout becomes proportional

to the inverse size of the screen aligned bounding box. Tighter layouts are ranked higher,

while large visualizations will reduce the quality value (3.7).

QExtension = 1−
Diag2d,exp

√

ImageWidth2 + ImageHeight2
(3.7)

Figure 3.17 demonstrates the change of required space when choosing different layouts

for an assembly. Due to poor layout choices, the layout in (a) is larger than the layout

in (b). Notice how the layout in (a) requires more space, making it less suitable for small

screen devices. The layout is the result of optimizing the visibility and the projected size



70 Chapter 3. Combining Filtering and View Management

of the exploded parts, which explodes parts into the direction of the user. To create the

minimally extended layout shown in (b), a higher weight is added to QExtension than to

visibility and size. Note that while the extension is smaller than in (a), all parts are still

visible. The smaller visualization now allows the user to zoom in closer on the object

of interest, making it easier to explore fine details. Additionally, a minimally extending

layout can decrease the amount of scene modifications in order to avoid collisions.

3.1.6.3 Scene-Aware View Management

AR environments are often visually very complex, and augmentations easily suffer from

interferences with real world structures, if their layout does not take the background into

account. For instance, in Figure 3.18(a), the best compact explosion diagram collides in

screen space with the box next to the space ship, while, in the combined visualization

in Figure 3.15(a), annotations interfere with the text boxes printed on the poster. To

avoid such conflicts, we propose scene-aware view management, that causes not only the

view management to react to the real world scene, but also the real world react to the

augmented content.

To achieve scene aware view management, the straight-forward solution is to adapt the

layout of the data to avoid visual interferences with the scene. We present two solutions

for resolving interferences using the example of compact visualizations. First, we optimize

a compact visualization not only for a single layout, but for a set of alternative layouts

for each viewpoint. Second, if alternative layouts cannot be found, we adapt the layout of

the scene to accommodate the compact visualization.

Figure 3.18: Scene-aware compact explosion diagrams. (a) The best layout may col-
lide with important elements in the real world environment. (b) By preparing a set of
alternative layouts (c) we are able to choose a layout which fits in the environment.



3.1. Compact Visualizations 71

(a) (b) (c)

Figure 3.19: Layout-aware scene modification. As alternative layouts cannot always avoid
collisions with scene objects, we displace real scene elements by applying three different
strategies, which combine alternative layout selection and scene modification. (a) The best
layout causes the largest amount of scene modifications. (b) To minimize the modifications,
a less comprehensible layout can be chosen instead. (c) When both strategies do not
produce acceptable results, a trade-off between scene modifications and comprehensibility
can be computed.

Alternative layouts. In order to avoid interferences with the real world, we need lay-

outs that fit into the spatial constraints given by the environment. Therefore, the layout

optimization must not only consider compactness and frame coherence, but also potential

collisions with other objects in the environment. This can easily be accomplished during

optimization by integrating an appropriate collision detection method into the respective

layout algorithms. The layout algorithm thereby is able to choose layouts which avoid real

objects.

However, when preparing compact layouts using the method described in

Section 3.1.6.1, the optimization usually has no knowledge of real objects encountered

at runtime. We address this issue by precomputing alternative layouts for compact

visualizations at each sampled viewpoint. To achieve temporally coherent changes as

described in section 4.1.1 for each alternative layout, we also need to prepare aligned

layouts for the alternative layouts.

As the spatial constraints of the real environment are unknown during the alternative

layout preparation, we precompute layouts, which vary as much as possible. Starting with

the best layout calculated for a sample point, we iteratively search n alternative layouts for

this same point. A new alternative layout ALn for a compact visualization is computed by

optimizing its quality parameter, as described in section 3.1.4.4. In addition, all differences

between the currently optimized layout and already computed alternative layouts AL0
to

ALn−1
of the previous n − 1 iterations for the same sample point are incorporated into



72 Chapter 3. Combining Filtering and View Management

the optimization. This ensures that the same layout is not calculated multiple times for a

sample point.

This iterative optimization is easily achieved by sequentially executing the pipeline

shown in Figure 3.3 n times. The resulting layout of each iteration is stored as alternative

layout for the viewpoint and is also forwarded to the next iteration to calculate the quality

criterion QAlternative, which is defined by (3.8).

QAlternative =
1

n

n−1
∑

i=0

Diff(ALi
, ALn) (3.8)

At runtime, we search for a suitable layout by sequentially trying all alternatives in

descending order of quality, until we find one that fits into the real environment. The

quality score at runtime depends on the criteria used during optimization, but without

considering QAlternative.

The difference estimationDiff(ALi
, ALn) between layouts depends on the type of visu-

alization. For instance, to find alternative compact explosion layouts, which are maximally

different from each other, we estimate the l2 distance Diff(L1, L2) of the respective part

positions relative to the center part of the explosion. Figure 3.18(b) shows four different

compact explosion diagrams, which have been generated by maximizing their variation.

After detecting the collision with a real object (Figure 3.18(a)), we search for an alterna-

tive layout among the candidates shown in Figure 3.18(b). Note that, since we consider

high quality layouts first, we select the one in the upper right corner instead of the one

in the lower left corner, which would fit. However, it represents the explosion using fewer

pixels and was, thus, considered less visible. The chosen layout is applied in Figure 3.18(c).

Scene modification. Preparing alternative layouts allows the integration of compact

visualizations within the available space. However, in densely cluttered scenes, the space

may not suffice and all alternative layouts cause collisions. Hence, if no suitable alterna-

tive layout is found, we displace real scene elements to create more room for the compact

visualization. Figure 3.19(a) provides an example of a compact explosion diagram. Fig-

ure 3.15(b) and Figure 4.2 show the modification of a real poster to integrate annotations.

Displacing real world objects is a drastic measure and may be undesirable in some

applications. We therefore aim to minimize such alterations by allowing three different

strategies to displace scene elements. The first strategy uses the best layout without con-

sidering the amount of modifications to the real scene, and, thus, may drastically change

the scene. The second strategy aims to minimize the required scene modifications by



3.2. Hierarchies in View Management 73

choosing a less optimal layout. The third strategy finds a compromise between modifica-

tion and layout quality to balance both. Figure 3.19 illustrates these three strategies.

We implemented the scene modifications by extending the 2D force-based approach

of Hartmann et al. [56] to work with 3D objects and forces. Furthermore, we introduce

motion constraints for real objects, to ensure scene-coherent modifications. For instance,

the real objects in Figure 3.19 are constrained to move on the ground plane. The text

boxes in Figure 3.15(b) are constrained to move on the plane defined by the wall. The

constraints can also limit the overall amount of allowed modifications by restricting the

distance that objects can move.

3.2 Hierarchies in View Management

Compact visualizations reduce the amount of data and, therefore, the clutter on screen

by filtering redundant items and creating an optimized layout with the preserved items.

However, as the data density increases, the layout will deteriorate again, until data must

be removed.

Ideally, the amount of data is reduced to a presentable extent without losing any

relevant information. Aside from removing data by filtering and rearranging with view

management techniques, clutter can be reduced by aggregating data points into clusters.

By recursively aggregating data points and the resulting clusters, an information hierarchy

can be built, similar to a LOD visualization. A selection algorithm can then decide which

parts of the hierarchy to visualize.

Naturally, not all clusters can be shown. Therefore, user interaction is required to

retrieve all available details on demand. The aggregated data often requires a change of

the representation, because a summary of the data must be presented. However, while

clustering changes the appearance of the data by aggregation, the complete information

space is preserved.

In the following (Section 3.2.1), we present a method that controls the information

density of the displayed items based on a hierarchical data structure. Information density

refers to the number of items presented on the display based on the available screen-space.

Ideally, the selection is balanced over the screen-space in order to avoid clustering of items

in one region. While a selection of lower information density exhibits larger gaps between

the data, a higher density presents more information with less space in between. Our

method selects items from the created hierarchy by taking into account user priorities

and the available screen-space. The information is adapted during interaction to reduce



74 Chapter 3. Combining Filtering and View Management

the visual clutter. Hierarchical representations can also be integrated into the compact

visualization framework. In section 3.2.2, we show how the optimization of compact

visualizations can be expanded to also handle such hierarchical data structures.

3.2.1 Adaptive Information Density of Annotations

We address the issues of data loss through filtering and clutter from data overload by

creating an information hierarchy, which is conceptually similar to semantic level of de-

tail [38]. By recursively applying clustering, an information hierarchy is built. Our clus-

tering approach not only considers user-controlled spatial attributes (e.g., distance), but

also non-spatial attributes (e.g., semantic tags). The sum of these user-weighted attributes

provides a ranking of the data, which expresses its relevance to the user. To avoid visual

clutter, a display algorithm shows data which is relevant for the user in more detail, while

it always adapts the overall amount of information to the available screen space. It does

so by solving an incremental optimization problem, deciding which nodes in the hierarchy

are selected for display. Users can dynamically adjust priorities to interactively drill down

on data deemed relevant, and reveal all available details on demand.

Figure 3.20: System overview. Our information density display follows the information
visualization pipeline as presented by Card et al. [23]. In the data transformation step,
the input data is clustered to create a hierarchical representation of the data. The data
items of the hierarchy are encoded as glyphs. The user can influence each step explicitly
via the user interface (blue line) or implicitly by changing the viewpoint and manipulating
the glyphs directly (orange line).

Our method lets users query geo-referenced data about their surroundings, such as

restaurant information or real estate offers, from online databases such as Google Places1.

The data points are visualized as annotations in an AR view. A typical use situation will

involve several hundreds or thousands of data points, more than what can be presented in

1https://developers.google.com/places/



3.2. Hierarchies in View Management 75

full on the screen, making view management necessary.

Visualization for AR browsers has similar requirements as in classic information visual-

ization, which involves the three main stages of the information visualization pipeline [23]:

data transformation, visual encoding and view transformation (Figure 3.20). We allow

user interaction in all three stages. While the first two stages change the underlying data

structure and the visual encoding, the user can directly interact with the data in the third

stage, the view transformation. In addition, the AR user directly controls the camera and

can change the viewpoint of the data.

Data transformation and visual encoding are conceptually a pre-process, yielding visual

data structures, which are presented in a temporally consistent manner during the view

transformation stage. However, the pre-processing is swift, taking just a few seconds even

on mobile devices, and can be repeated every time the user wishes to change a parameter.

3.2.1.1 Hierarchical clustering

Figure 3.21: Hierarchical clustering. By recursively applying clustering on the input data,
we create a hierarchy of clusters. Starting with n data points, we create four clusters that
contain approximately n

4 items. The recursion terminates at the leaf nodes that contain
the single data points.

In the data transformation stage, a hierarchy of clusters is computed based on simi-

larity of data points. A flat partitioning would require knowing the number of clusters in

advance and cannot reflect the structure of the data well [91, p.377]. Instead, by using

a cluster hierarchy, the view management can later decide for every frame at which level

the hierarchy should be cut and, therefore, how many clusters should be presented.

We consider a set of data points D = {Di}, each with a set of attributes A. We denote

the attribute set of Di as Ai = {Ai,j}. Each attribute can have an arbitrary data type,

describing aspects such as user satisfaction rating, social tags or pricing. Both position



76 Chapter 3. Combining Filtering and View Management

Pi in world space and position pi, the projection of Pi to screen space using the current

camera position, may, but need not be used as attributes. Two attribute values Ai,j and

Ai′,j of the same type T can be compared with a comparison function cfj : T×T → [0, 1],

which yields 1 if two values are identical, and 0 if two values are most dissimilar.

Note that the comparison function can involve operations that depend on a user’s

situation and are, thus, subject to change over time. For example, we can use a mean

or maximum value for normalizing a certain attribute, making the comparison function

dependent on the current database population. We may also consider a routing algorithm

that determines the time to walk to each destination from the user’s current position. This

estimate will become increasingly incorrect, if the user is moving. For such attributes,

we assume that attributes remain approximately valid during a short duration of usage.

Moreover, the user can trigger a fast re-computation at any time.

The user expresses the desired information by setting desired values U = {Uj} and

weights wj for each attribute (
∑

wj = 1). A weight of 0 indicates that the user does not

care about a particular attribute; in this case, the desired value for this attribute can be

arbitrary. With the comparison functions, we can compute the similarity S : A×A → [0, 1]

of two attribute sets as the weighted per-attribute difference:

S(Ai,Ai′) =
∑

j

wj · cfj(Ai,j , Ai′,j) (3.9)

Once the user has set weights and desired values, the clustering algorithm can be started.

We use top-down divisive k-means clustering to create our hierarchical cluster tree com-

posed of nodes N = {Ni} (Figure 3.21). All data points initially form a cluster that

corresponds to the root of the tree. We recursively perform k-means on the root, until

the leaves of the tree correspond to the smallest possible cluster containing only one item,

i. e., D ⊆ N. K-means creates clusters based on the similarity function S. We define the

branching factor of the tree by choosing a number of clusters for each iteration of k-means.

For our experiments, we set this factor to four.

The world-space position of an intermediate node is computed as the centroid of the

children’s positions. If Pi or pi are used as attributes for the evaluation of S, we found

it useful to decrease their weight proportional to the graph distance of a given Ni from

its leaves. In this way, position has a stronger influence on clustering in the lower, more

“concrete” layers of the tree, but similarity of semantic attributes has a stronger influence

in the upper, more “abstract” layers of the tree.



3.2. Hierarchies in View Management 77

3.2.1.2 Optimal label selection

In the following, we describe the view transformation stage of our approach to balance

the available screen-space against visualizing relevant data to the user. In addition, the

system must handle viewpoint changes in a temporally coherent way. A view management

algorithm makes sure that any data items that might interfere are rearranged on screen.

(a) (b)

Figure 3.22: Selection from the cluster hierarchy. (a) By performing a greedy best-first
search, we create a selection of the cluster hierarchy that resembles a cut through the
tree. The blue line cuts the hierarchy correctly. All nodes shaded green, which lie directly
beneath the cut, are placed on the screen. (b) The cut must be performed in such a
way that either all children or no child of a node are placed on the screen. Otherwise,
information about children would also be shown as part of the parent. Thus, the orange
cut is invalid, because the predecessor (P) of two nodes (C) is included.

Initial label selection. We want to select a set of labels L = {Lk} representing a

cut through the cluster tree, so that all data points have some representative. We write

children(i) for the set of all direct children of Ni, children
∗(i) for the set of all direct and

indirect children of Ni (including Ni itself), and leaves(i) = {x|x ∈ children∗(i)∧x ∈ D}.

Using these definitions, we can describe the set of all possible cuts as follows (Figure 3.22):

cut(N) = {{L} | L ⊆ N ∧ Lk 6⊆ children(L′
k) ∀ (Lk, L

′
k) ∈ L ∧

(∃ Lk ∈ L | Di ∈ children∗(Lk) ∀ Di ∈ D)}
(3.10)

With these considerations, we can select a suitable L ∈ cut(N) for a given user position.

By introducing a cost and benefit metric, we can interpret the label selection problem as

a constrained optimization problem. It tries to fill the screen with the most beneficial

labels, by optimizing a benefit function B(k)



78 Chapter 3. Combining Filtering and View Management

max
L∈cut(N)

∑

Lk∈L

B(k) (3.11)

while avoiding excessive clutter by respecting a maximum cost C(k)

C(k) ≤ Cmax ∀ Lk (3.12)

Figure 3.23: To measure the visual clutter of a data item, we consider a region with radius
α around the item (see red circle). If an item falls within the radius of another item, the
clutter is calculated as cost C based on the distance between the nodes. The closer two
nodes lie together, the larger the clutter and, thus, the cost of placing a node. The blue
and the yellow node fall within the radius of the green node. The cost for placing blue is
smaller, because it is farther away from the green node and produces less clutter in the
region.

The benefit of a leaf Di is given by its similarity to U, i. e., S(Ai,U). The benefit of

an intermediate node depends how well it can represent its leaves. We account for this

fact by weighting the benefit with the label’s spatial displacement in screen space, wP ,

and the semantic similarity of the data points represented by the label, wS . The spatial

displacement wP gives more benefit to intermediate nodes, which are close to their data

points, expressed as relative inverse distance:

wP (k, k
′) =

1

1 + |pk − pk′ |
(3.13)

The semantic similarity wS gives higher benefit to an intermediate node representing

homogeneous data points, which have a high average similarity S:



3.2. Hierarchies in View Management 79

wS(k) =
2 ·

∑

(Li,Li′ )∈leaves(k),i 6=i′ S(Ai,Ai′)

|leaves(k)| · (|leaves(k)|+ 1)
(3.14)

We combine these terms in a recursive definition of a benefit metric B(k):

B(k) =







S(Ak,U), ∀Dk ∈ D

wS(k) ·
∑

Lk′∈leaves(k)
(B(k′) · wP (k, k

′)), otherwise
(3.15)

The cost of including a node Nk in L is related to the clutter it produces. Using wP ,

we can express the clutter as local density of other labels in a neighborhood of radius α

around a node (Figure 3.23):

C(k) =
∑

Nk′∈L, |pk−pk′ |<α

wP (k, k
′) (3.16)

This optimization problem can be approximated with a greedy best-first search

(BFS) [103]. It starts with the root of the cluster tree and keeps propagating the cut

through the tree towards the leaves, by unfolding an intermediate node Lk /∈ D, i. e.,

replacing Lk with its children. The unfolding operation changes the relative benefit

Ru(k):

Ru(k) =







∑

Lk′∈children(Lk)

B(k′)

C(k′)






−

B(k)

C(k)
(3.17)

The Ru(k) are kept sorted in a joint queue with decreasing order. In every step, the node

with the highest relative benefit is chosen, provided it is eligible, i. e., C(k′) ≤ Cmax ∀ Lk′ ∈

children(Lk) for unfolding. This process terminates, if no more improvements can be

found.

Greedy BFS quickly converges towards a useful result, but can get stuck in a local

minimum. We therefore refine the BFS result with a random search approach based on

threshold accepting [34]. Threshold accepting applies small random changes to the solution

and temporarily accepts solutions that are worse than the current best configuration. We

randomly select an unfolding and a folding operation (replacing a group of nodes by their

common parent). The quality of the resulting configuration is determined as usual, via

the cumulative benefits. Note that during this optimization step, the maximum cost given

by equation 3.12 are not exceeded. The optimization terminates after a defined number

of iterations, which makes performance very predictable.



80 Chapter 3. Combining Filtering and View Management

Temporal coherence. After the initial selection, the labels are presented to the user.

For interactive use, it is important to ensure temporal coherence and suppress jumping

motion of labels. Therefore, labels are adjusted incrementally in every frame. After a

change of viewpoint, the pk are recomputed, and the queue containing the Ru is re-sorted

accordingly. BFS is restarted on the re-sorted queue. Usually changes are small and

continuous, so the optimization converges quickly after only a few operations.

Under typical conditions, the user will explore the information presented in the AR

browser with sweeping rotational motions, while standing in a particular place [141].

Translational motion, i. e., walking while using the AR browser, is less common. We

exploit the preference for rotational motion by computing pk in spherical coordinates

centered around the user, rather than in projective coordinates. This yields a label opti-

mization, which is valid for any viewing direction, as long as the user remains in the same

place. Rotating the camera thus selects a different viewport, but otherwise has no effect

on the label selection. The label selection must only be restarted, if the user’s translational

motion exceeds a small threshold.

Local view management. Assigning a fixed position to labels turns label placement

into a discrete label selection problem with lower computational demands. However, this

discretization can lead to poor results, if many important labels occupy the same region.

Moreover, representing a cluster by its centroid in space is not always a good choice.

We increase the quality of view management after label selection by subjecting them to

another optimization that purely considers spatial placement. This placement employs the

“hedgehog labeling” technique [129] (Section 4.2), which places annotations in the 3D space

to achieve stable layouts. We use the plane-based algorithm that constrains the movement

of a label to a plane. In our case, the plane is placed at the geo-location of the point of

interest and always parallel to the image plane. The scale is set up so that annotations

have the same apparent size, independent of their distance. Alternatively, the scale can

depend on the spatial distance from the user’s location. This approach gives enough

flexibility to compensate for poor initial placement, while ensuring temporal coherence of

label adjustments. This approach can be seen as a coarse-to-fine optimization of label

placement, where the label selection represents the coarse step and the label placement

represents the fine step.

We use hedgehog labeling both when a node is first displayed and to compensate for

local clutter after a viewpoint translation. Viewpoint rotation is already addressed by

label selection based on spherical coordinates.



3.2. Hierarchies in View Management 81

However, we must handle the case where a label moves off the screen. A leaf node will

simply be omitted, but an intermediate node representing at least one data point on the

screen must always be displayed. This problem can be handled by adding a constraint to

the hedgehog labeling enforcing that only on-screen coordinates are eligible.

3.2.1.3 Glyph Design

The visual encoding stage transforms data points into glyphs encoding the relevant at-

tributes. Glyphs are a common way to visualize multi-dimensional data in a meaningful

way [143]. In our case, the glyph should inform the user about the represented data points

and the relation of the different categories to the currently set user preferences. It also

should have a compact visual footprint, so that it does not cover too much screen real

estate. We use two variants of the glyph, one for leaves (individual data points) and one

for intermediate nodes.

(a) (b)

Figure 3.24: Glyph design. (a) The glyph for a single data point encodes the underlying
data by comparing it to a user defined reference value. The border color indicates the
average matching quality of the selected attributes to the reference attributes (the greener,
the better). The bars visualize how well selected attributes match the reference attributes
(the longer, the better). (b) The glyph for grouped items shows the same information,
but averaged over all items. Optionally, the user can choose to show the best contained
item instead of the average. The number indicates the number of contained items. The
bar at the bottom encodes the spatial extent of the contained data relative to the glyph.

The glyph for a leaf Lk (Figure 3.24(a)) should convey the relevance of the represented

data point to the user directly. It consists of a square icon with a footer text describing

the data point (e. g., stating a business name). The icon has a thick frame, which is

color coded according to the leaf’s benefit B(k), where 1 is green and 0 is red. Inside



82 Chapter 3. Combining Filtering and View Management

the square, there is room for up to three attributes selected by the user, arranged as a

horizontal mini-barchart. Next to an icon identifying the attribute, the agreement of the

selected attribute with index j to the user’s preference is shown, i. e., cfj(Ak,j , Uj).

The glyph for an intermediate node (Figure 3.24(b)) summarizes the relevance of the

leaves it represents. It is also a square icon. The number of leaves represented by the glyph

is shown in the top left corner, similar to icons of popular mobile user interfaces. Like in

the leaf glyph design, the frame of the glyph is color coded to show the average benefit

of the contained nodes. A box extending on a line at the bottom of the glyph shows the

spatial extent wP of the cluster relative to the screen width, depicted as a fraction of the

glyph width. Similar to the leaf glyph, a mini-barchart inside the square displays up to

three selected attributes. However, the bar size for each attribute is proportional to the

average agreement avg(k, j) over all leaves with the user’s preference, i. e.,

avg(k, j) =

∑

Li∈leaves(k)
cfj(Ai,j , Uj)

|leaves(k)|
(3.18)

Averaging the content of the node provides a good general overview of the contained data

values. However, when users look for the best matches to certain criteria, the averaging

operation hides potentially good matches in the intermediate node visualization. To com-

pensate for that, an intermediate node can alternatively represent the leaf node with the

best benefit and adapt its appearance accordingly. The user interface contains a simple

toggle switch to allow users to select the desired representation.

3.2.1.4 Interacting with Clusters

We allow user interaction in every step of the pipeline of Figure 3.20. To be able to

change the structure of clustering during the data transformation, we provide the users

with an interface, where they can adapt the weights of the attributes and, thus, change

their preferences (Figure 3.25(a)). To facilitate the interaction, the interface allows users

to specify the weights not as absolute values, but relatively to each other. Internally, the

relative settings are mapped to weights that sum up to one, as required by the algorithm.

Changing the weights triggers recalculation of the hierarchy (Figures 3.25(b) and 3.25(c)).

The user interface also allows users to specify the user preference values U that are

used to calculate the benefit of the nodes. Consequently, this changes the selection of

nodes from the hierarchy, but not the hierarchy itself. The visual mapping of the glyphs

is also updated accordingly (Figures 3.25(c) and 3.25(d)).

In the view transformation step, the user must be able to manually unfold clustered



3.2. Hierarchies in View Management 83

(a) (b) (c) (d)

Figure 3.25: User interface. (a) The user can change the weight of each attribute (numbers)
and the attributes of the reference value (icons beneath numbers). (b) A selection of
items after setting up the reference values and weights. (c) After changing the weight of
attributes, the underlying groups are recalculated and the shown items are updated. Note
the item with the blue frame in (b) and (c). Although the selection of presented items
changes, the reference value and, thus, the white bars stay the same. (d) The display is
again updated when the user changes the reference values. Note how the item with the
yellow frame in (c) becomes green in (d), because it is a better match. The item with the
red frame becomes red, because it is a worse match.

(a) (b)

Figure 3.26: Interacting with groups. A user can unfold grouped items by clicking their
glyph. (a) The user clicks on the glyph with the yellow rectangle. (b) The unfolded new
elements are highlighted using a blue outline. To make room, other items are replaced by
the group they belong to.



84 Chapter 3. Combining Filtering and View Management

representations. We allow the user to drill down by unfolding the subsequent levels of the

hierarchy step-by-step. The user simply clicks on a glyph representing an intermediate

nodes to unfold the next level of the hierarchy. If the user’s unfolding leads to a violation

of the clutter metric, the system will first try to relax the situation locally via hedgehog

label adjustments. However, it may occasionally be necessary to invoke fold operations

on other labels to make room for the user’s unfolding (Figure 3.26). This problem can be

handled implicitly in the label selection optimization by assigning a higher weight to the

benefit of the label unfolded by the user.

By default, this user-driven benefit will slowly wear off with an exponential decay.

This allows the user to explore different areas on the screen or branches of the cluster

hierarchy incrementally. Older user interactions will become less relevant over time and

eventually make room for newer interactions. However, the user may instruct the system

to remember choices indefinitely.

3.2.1.5 Evaluation: Comparing to Filter Interface

We performed a qualitative evaluation to compare our hierarchical clustering interface

against a conventional filtering interface similar to the one used in similar AR browsers.

(a) (b)

Figure 3.27: Interfaces used in first study. (a) The interface that controls our information
density display (HUI). The numbers change the weight of the attributes. The icons beneath
the numbers change the selected attribute values. (b) The filter interface (FUI) used in
the study uses the same attributes and resembles a slider interface. The user can set the
range of the selected attribute values using the attribute icons. For instance, the blue
attribute lies in the range between 70 and 90.

We investigated two interface conditions: our hierarchical clustering user interface

(HUI) and a filter user interface (FUI). The folding and unfolding of the HUI behaved



3.2. Hierarchies in View Management 85

as described before. We also allowed participants to switch the presentation of intermedi-

ate nodes between showing the average of all contained items and showing only the best

contained item (Section 3.2.1.3). FUI behaved like a state-of-the-art AR browser filter in-

terface. The data items were filtered according to parameters set up by the user. The data

items were presented using a simple glyph representation, consisting of a circle and addi-

tional textual information (Figure 3.27(b)). Setting filter parameters removes information

from the AR view that does not correspond to the filter parameters. If glyphs overlap, a

force-based view management algorithm rearranges them to resolve the occlusion.

The interface condition was counterbalanced among the participants. We used the

same amount of data in both interfaces, but changed the attributes of the data between

conditions.

Hypothesis. FUI removes data that does not correspond to the current user prefer-

ences. However, the screen will still be cluttered, if too many data items are preserved.

In addition, setting up the filter parameters in FUI to find relevant data points might be

challenging. HUI aggregates items and, therefore, reduces clutter. HUI allows users to set

a preference value to which the items are compared to, which makes it easier to identify

relevant data items. Therefore, we expected our interface to be the preferred one.

Scenario and Setup. We used an accommodation search scenario in the evaluation.

We gave the participants the task to find rental apartments that fulfill certain require-

ments. For this purpose, we performed the study outdoors in an apartment complex.

The attributes of the data were created randomly and registered to the locations of the

apartments.

We used the following apartment attributes: number of rooms (scale with three en-

tries), square meters (scale with five entries), price range (scale with five entries). Partic-

ipants could set one or more of the categories of each attribute. The text of the leaf node

corresponded to the final price of the apartment.

We deployed the interfaces on a Surface Pro 2 running Windows 8.1 and used the

front-facing camera for capturing the surroundings. We used a panorama tracker [141] to

determine the orientation of the device and align the data with the real world. The reso-

lution of the application was set to 1280x720 and corresponded to the camera resolution.

Task. The task was an apartment search task, where users are presented with a

range of apartments. In order to see how participants would use the interface, we gave

them an open task. We asked participants to use the respective interface to look for

apartments that suited their criteria. The motivation behind this is that users identify



86 Chapter 3. Combining Filtering and View Management

Mode Mean (SD)
Question FI HI FI HI
I liked the visualization of data
items in the interface.

3 1 3.375 (0.92) 1.375 (0.74)

I found the visualization of
data items helpful.

3 1 3 (0.53) 1.25 (0.46)

The interface was convenient
for finding apartments.

2 1 2.625 (0.74) 1.5 (0.76)

The interface was convenient
for comparing apartments.

3 2 3.5 (1.07) 1.75 (0.71)

The interface provided a good
overview of the data.

3 1 3.125 (0.99) 1.75 (1.04)

Table 3.1: Questionnaire results for first study. The mode and mean (with standard
deviation) of the questionnaire results of a five-point Likert Scale (1 .. strongly agree).

interesting apartments and collect them into a list that would be revisited later to allow

better comparisons and decision making.

Procedure. We met the participants at a meeting place, where they filled out the

consent form and a demographic questionnaire. Then we moved on to the apartment

site, where the study was performed. At the site, we explained the first interface to

the participant. The order of the interfaces was counterbalanced. So participants either

started with HUI or FUI.

After they were confident with using the interface, we asked them to solve the given

task. We also asked the participants to speak aloud during the task. After finishing the

task with the first interface, we repeated the same task with the second interface. After

finishing the task with both interfaces, they filled out a questionnaire asking for feedback

and rating the interfaces. We concluded the session by asking open questions regarding

their experience.

Results and Discussion. A total of 8 people (3f) aged 26–34 (mean=31.5, sd=3.17)

took part in the study. In the questionnaires, we forced participants to decide for either

FUI or HUI as the preferred interface using a binary choice. Seven of eight participants

preferred HUI. An exact binomial test found a significant difference (α = 0.05) that HUI

is the preferred choice (p < 0.05). In addition, we asked participants, if the intermediate

node in HUI should show the average of all or the best item. All participants preferred the

best item, because finding the best item is most relevant for a search task. The average

would hide this information. In general, the questionnaire revealed that participants were

in favor of our interface (see Table 3.1).

The one participant who did not prefer HUI argued that while the clustering reduces

the amount of clutter, the registration of the items summarized by the cluster is lost. In



3.2. Hierarchies in View Management 87

FUI, the location of an item was clearly visible, if the amount of clutter was not too high.

Therefore, the participant suggested grouping items by stronger location-based criteria

such as the floor of the building and also adding more options to the user interface for

targeting items based on their spatial location to the user interface. Note that while we did

not include stricter location-based groupings in our study, our system can easily support

this by adding the respective attribute to the data.

In general, 62.5% of the participants made use of the real world registration of apart-

ments during their search for an apartment. For instance, if several apartments had at-

tributes of similar quality, the one that was in a higher floor was preferred. This underlines

the usefulness of the spatial registration of items for this task.

Participants preferred HUI, because it provided a better overview of the data than

FUI. In HUI, 75% of the participant did not only consider the best matches, but also

checked for other apartments that were close to the set criteria. FUI reduced the amount

of items to only a few, but information about other apartments was missing. 50% of the

participants mentioned that increasing the search range of FUI would add more items to

the visualization, but, also, cause more clutter and make comparisons more difficult.

The visual clutter in FUI made finding and comparing items difficult. This can prob-

ably be remedied by adding a similar glyph representation as in HUI to FUI. Therefore,

we performed a follow-up study, which included a condition similar to FUI, but this time

using the same glyph representation than HUI.

3.2.1.6 Evaluation: Different Degrees of Clustering

We conducted a comparative evaluation of three variations of POI clustering to assess if

the amount of information shown on the display affects the performance in a search and

in a successive recall tasks.

We investigated three clustering conditions in a between-subjects design. In the first

condition, there was no clustering, and all the leaf nodes were displayed at the same time

to the user (LUI) (see Figure 3.28(b)). Note that LUI essentially corresponds to FUI

of the previous study, but now using the same glyph representation as HUI to make it

easier to compare different items. Therefore, LUI corresponds to a condition resembling

a common AR browser, which uses a filter interface. However, in this study, we reason

that the filter parameters lead to a large amount of selected data, thereby filling the whole

screen.

In the second condition, a clustering algorithm was introduced, in which items were



88 Chapter 3. Combining Filtering and View Management

(a) (b)

(c)

Figure 3.28: Interfaces used in second study. The interfaces used in the second study
differed in the way items were clustered. (a) Our adaptive information density display
(HUI) that uses hierarchical clustering, after unfolding a number of groups. (b) The
interface using no clustering and showing all data items at once (LUI). (c) The interface
using simple clustering (SUI) based on spatial proximity and similarity, after unfolding a
number of groups.

grouped by proximity and the parameters set by the user (SUI) (see Figure 3.28(c)). In

this condition, the user was able to unfold groups of items. Once the items were revealed,

the leaf nodes were not merged back into clusters automatically. Therefore, after a certain

number of interactions, the display was populated by a growing number of leaf nodes,

similarly to LUI. Finally, the third condition was HUI, as used in the previous study (see

Figure 3.28(a)).

Hypothesis. LUI showed all available items, independent of their relevance to the

user. After a number of interactions in SUI, a similar situation occurs, because the un-

folded leaf nodes remain visible on the screen. In HUI, the unfolded leaf nodes are re-

grouped again into clusters, after additional groups are unfolded. We expected the leaf

nodes populating the display in LUI and SUI to produce visual clutter and to affect the



3.2. Hierarchies in View Management 89

performance in a search and selection task and in a successive recall task of the previously

selected items.

Scenario and Setup. We reused the accommodation search scenario of the first

study, but conducted the second study at a different location. The interface had the

same functionality as the HUI interface in the previous study. We added functionality to

perform the recall task. By pressing a button, the superimposed glyphs were removed, and

only the view through the camera was shown. A participant could indicate the location

of a previously selected item by tapping on the screen to mark its location with a white

square. The apartment attributes remained the same, except for the text of the leaf node,

which now indicated the size of the apartment in square meters. The experiment was run

on a Surface Pro 2 tablet with the same characteristics as the one used in the first study.

Task. Participants were asked to perform two tasks. The first consisted of a search

and selection task, in which participants had to find and select all the apartments matching

the characteristics indicated by the experimenter. In the second task, they were shown

the surroundings without any digital information superimposed, and they were asked

to indicate the locations of the apartments that they remembered from the search and

selection task.

Procedure. On the day of the test, participants were first briefed on the experimental

procedure and aims. Then they gave informed consent to take part in the study. After

they had filled in a brief questionnaire collecting background information, they were led

to the spot where the test took place. First, participants were instructed how to operate

the interface, then they were allowed to practice with the interface, until they felt confi-

dent. Next, the experimenter asked participants to search and select all the apartments

matching certain characteristics: a size from 80 to 90 m2, in the highest price category

and with the largest number of rooms. In total, there were 20 items matching the required

characteristics with a total number of 219 items. Participants were told to alert the ex-

perimenter when they believed they had found all the items. Participants were instructed

to be careful in performing the task, as they would be required to carry out a second task

based on the first one. There were not explicitly told about the recall task, in order to

prevent the use of mnemonic strategies. When participants told the experimenter that

they had concluded the search and selection task, they started the recall task. Again,

the participant was asked to tell the experimenter when the task was completed. Finally,

participants were asked to complete a brief questionnaire to collect their opinions and

impressions of the interfaces.



90 Chapter 3. Combining Filtering and View Management

Participants. In total 36 participants (18f) volunteered in the study, 12 in each

condition. The mean age was 24.27 (sd=2.5). Each subsample was composed of 50%

women and was balanced for age, as confirmed by a one-way ANOVA F (2)=.067, p=.93.

All participants had very limited previous experience with AR applications, if any.

Figure 3.29: Correct and wrong selections of the search and selection task. When using the
adaptive display, participants made significantly less wrong selections during the search
task.

Results. The number of items correctly selected, the number of wrongly selected

items and the task durations were compared across the three conditions with a one-way

ANOVA (Figure 3.29). Statistical analysis revealed no significant differences in the num-

ber of correct selections (F (2)=1.88, p=.16). Similarly, the time required to complete the

task did not significantly differ in the three conditions (F (2)=1.54, p=.22). A significant

difference emerged in the number of errors users made (F (2)=5.04, p=.012). Post-hoc com-

parison with Bonferroni correction confirmed that with HUI, users made significantly less

wrong selections (median=18.66, sd = 7.04) compared to SUI (median=30.18, sd=9.22).

A reduction in the number of errors is evident when comparing the number of wrong se-

lections in LUI (median=23.75, sd=9.6) and HUI (median=18.66, sd=7.04), even though

the difference was not significant.

For the recall task, we computed the relative number of correct recalls as the ratio of

the correctly retrieved locations and the number of correct selections of the selection task.

Surprisingly, no significant difference emerged comparing the three indexes in a one-way

ANOVA (F (2)=.26, p=.76). Regarding the post-use questionnaires, a Kruskal-Wallis test

showed no significant differences in the way users evaluated the three systems in terms of

information organization, ease of use, involvement, pleasantness of use and satisfaction.



3.2. Hierarchies in View Management 91

Even if users did not show enthusiastic evaluations of the interfaces for all the dimensions

explored, a one sample t-test run against the central value of the response scale, i.e.,

3, showed a trend (t(11)=2.22, p=.04) towards preferring HUI (median=3.6, sd=.9) in

contrast to LUI (median=3, sd=.9) and SUI (median=3.4, sd=.79)

Discussion. The significant difference in the error rate during the search and selection

task indicates that participants were more focused on selecting the relevant items in the

HUI condition. Interestingly, there was no significant difference in identifying the found

items in the recall task. We believe that the reason for this is that the amount of clutter

was not high enough to impact the perception of the presented data items.

For this study, the number of items was chosen in a way that the items were still clearly

visible and distinguishable in the interface that did not use any clustering (LUI). However,

this generally reduced the amount of clutter, and participants did not seem to have issues

identifying items in the LUI and SUI interface, even though the screen was covered with

items. Nevertheless, participants were slightly more satisfied with the adaptive interface

(HUI).

3.2.2 Hierarchies in Compact Visualizations

The hierarchical clustering allows us to present different LOD of the information. Compact

visualization can also be refined to allow for different LOD by introducing hierarchies of

similar items. Hierarchies in compact visualizations allow us to gain a more fine grained

control over the presented data. The data can be reduced even more or expanded with

another level of information.

Hierarchies are often inherent in the filtered data. In the following, we refine the

viewpoints of compact photo collections by adding an additional level of viewpoints. In a

second example, we give an example where the number of representative items in a compact

explosion diagram is reduced by detecting additional similarities in already similar groups

of items.

3.2.2.1 Two-Level Compact Photo-Collections

For landmarks with a large number of associated images, we add a second level of rep-

resentatives to each representative image. Figure 3.30 shows such a two-level compact

visualization. In the middle row, first-level representatives are shown, while second-level

representatives have been arranged in the upper and lower rows.



92 Chapter 3. Combining Filtering and View Management

Figure 3.30: Two-Level compact visualization. By additionally grouping the elements of
each orientation cluster by their distance to the object of interest, we are able to select
more than a single representative from each cluster. In the case of landmark presentations
multi-level compact visualization allows to display a higher variation of images.

Clustering. Within each of the orientation clusters, we derive second level representa-

tives by searching for images presenting the object in similar detail. We derive a measure

of the amount of detail only by computing the distance from the GPS location of an image

to its corresponding landmark, since camera zoom information is not consistently avail-

able. Thus, for each COj
, we again use k-means to create distance clusters CDk

based on

similar distance.

Selection of representatives. From each distance cluster, we select the image with

the smallest distance to cluster center.

Layout optimization. Second-level representatives for geo-referenced photo collections

are supposed to show the object of interest in a variety of different details. In order to

maximize the variation, we optimize the layout using a measure of detail variation for a

single row. To be able to show more interesting elements in more detail, we furthermore

control detail variation using the number of images in a distance cluster CDk
. We assume

that more images indicate more interesting structure, and, therefore, we favor a more

detailed visualization for representatives from those orientations.

Figure 3.30 shows the resulting two-level compact visualization. To each first-level

representative, shown in the middle row, a set of second-level representatives has been

added, each one of them demonstrating a set of images taken from similar distances to

the explored landmark.



3.2. Hierarchies in View Management 93

3.2.2.2 Explosion Diagrams

To create hierarchical compact explosion diagrams, the grouping algorithm discussed in

Section 3.1.1.1 can be called recursively to detect similar subgroups.

Detecting Hierarchies. After applying the FSG search to the graph Ag of the whole

assembly, a list of sets which contain the largest available non-overlapping subassemblies

has been discovered. However, the selected subassemblies may even contain other frequent

subassemblies. If we also identify these subassemblies, we are able to select a representative

in multiple levels of the hierarchy, which in turn allows us to further reduce the number of

displaced parts in a representative exploded view. To find frequent subassemblies within

a previously determined subassembly, we apply the FSG algorithm recursively, until no

subassembly can be determined anymore. When performing the FSG search on a set S of

groups G, each group G is considered to be a separate graph to be mined for subassemblies.

This means that a subsequent FSG search does not exceed the limits of the groups they

are applied to.

By recursively applying the FSG search algorithm to a subassembly, we retrieve a

hierarchy of frequent subassemblies. The groups of the detected sets and subsets are similar

to each other, because their graph representations are isomorphic. However, subgroups of

the same set may have different neighborhood relations to the group they are contained

in. The reason for this is that the FSG mining algorithm removes all parts from the

input graph, which do not have similar counterparts (for which only one label exists in

the graph). Basically, this removes the contacts between any subgroups and the group

they are contained in. By recovering this information, we are able to refine the hierarchy.

This refinement allows us to choose better representatives from a set, because similar

groups are then also distinguishable by their neighborhoods. Therefore, we define that

similar subgroups Gl not only must be similar in terms of graph isomorphism, but also the

neighborhood to the groups Gh they are contained in has to be similar. We implemented

the following algorithm, which searches for similar neighbors of groups of a set.

For each neighbor of a group, the set of adjacent groups En is determined. Sets En

of similar neighbors in different groups Gh are merged into the set Es. Then, simple set

operations are performed on the sets Es to retrieve the common neighborhood for similar

groups.

For a representative Er from the sets of Es, the following operations are performed in

combination with each Es: First, the intersection Ec = Er ∩Es is created. If |Ec| = |Er|,



94 Chapter 3. Combining Filtering and View Management

all groups share the same neighbor, and the algorithm continues. Otherwise, the groups

of Er share different neighbors. These groups are eliminated from Er (Er = Er \Ec). The

algorithm continues, until either all Es have been considered, or |Er| = 0. Those groups

left in Er have similar neighborhoods. The algorithm finally terminates, when all sets of

Es have been considered as representative set Er.

Group-based Layout. If frequent subassemblies exist in an exploded subassembly, we

cannot simply search for the biggest part in the main subassembly, because we also want to

create a similar exploded view of all frequent subassemblies, even if they appear cascaded.

Instead, we first compute a hierarchy of subassemblies, before we choose the biggest part

from only the highest level of the hierarchy. The highest level ensures that no other part

is similar to the chosen one, and, consequently, no conflicting explosion layout can result.

Note that, once again, by removing entire subassemblies in an unblocked direction of a

single representative member, we ignore collisions between parts during explosion. Even

though this may result in physically incorrect sequences to disassemble the object, we are

able to explode subassemblies independently of the overall model, which in turn enables

to calculate a single explosion layout for all similar subassemblies.

(a) (b) (c)

(a) (b) (c)

Figure 3.31: Selection Strategies in Hierarchical Groups. (a) All parts in a subassembly
have been exploded. (b) Representatives have been selected in each level of the hierarchy.
(c) Representatives have been selected in different subassemblies.

Hierarchical Subassemblies. If a hierarchy of groups exists, we allow to select

representative exploded views using three different strategies. We allow either to choose



3.3. Conclusion and Future Work 95

the representative parts from a single subassembly (Figure 3.31(a), Figure 3.31(b)), or to

select representative parts independently in different subassemblies of the same set (Figure

3.31(c)). If we chose to restrict the explosions to a single hierarchy, we have to decide if

we want to explode the entire subassembly (Figure 3.31(a)) or only a single representative

in each level of the hierarchy (Figure 3.31(b)).

Figure 3.31 shows an example for each given situation. Since it is an open question

which strategy results in the perceptually best results, our system allows selecting a strat-

egy at runtime. The strategy shown in Figure 3.31(b) seems most reasonable, as it reduces

the number of exploded parts compared to Figure 3.31(a), while representative parts are

not scattered over the layout as in Figure 3.31(c). We leave a perceptive evaluation of the

comprehensibility of each strategy for future work.

3.3 Conclusion and Future Work

In this section, we present methods to create overview visualizations of different data

types, such as annotations and explosion diagrams. We avoid cluttered presentations by

grouping data based on similarity measurements and only selecting representative items

for each group. In this selection process, we also take the created layout into account

and adapt the selection, if it would result in a degradation of the overall layout. For

instance, overlapping annotations or annotations grouping in only one region of the image

can already be avoided in the filtering step by selecting appropriate items from the input

data set. Therefore, we reduce the conflicts view management algorithms must resolve by

considering the layout that will be created when selecting certain items.

To achieve this, we have developed a framework which creates compact visualiza-

tions. Compact visualizations cluster redundant elements and select one representative

item from each cluster to present in a comprehensible layout. However, if the number of

redundant item groups grows, selecting a representative item from each can again lead to

data overload. Introducing a hierarchy into the redundant data remedies this problem,

because it creates additional LOD in the data structure. By visualizing different levels

of the hierarchy depending on the available screen-space, the amount of presented detail

can be reduced. We demonstrated such a LOD selection using hierarchical clusters of

annotations. Note that while we did not use the compact visualization framework for the

hierarchical annotations, the LOD selection can easily be integrated into the framework

by adapting the selection process. We demonstrated hierarchical approaches for compact

photo-collections and compact explosion diagrams.



96 Chapter 3. Combining Filtering and View Management

The compact visualizations do not include any user interaction. However, they can

be extended to support interaction. This becomes essential, when introducing different

LOD into the compact visualization. A user can start exploring the data from the initial

overview and then drill down to reveal more detailed representations.

Note that in the presented examples, compact visualizations use redundancies to group

items that are very similar to each other. However, data can also be grouped using weaker

similarities that are based on additional semantic information. For instance, we create the

hierarchy of clusters for the annotations by aggregating items based on semantic informa-

tion about their categories. This can easily be integrated into compact visualizations in

general.

If it is not possible to detect similarities between data items, other filter methods must

be investigated. One solution is using priorities that control which data items are presented

in the final visualization. Such priorities can be previously set user priorities [12], but also

based on geometrical properties, such as their size or visibility, if available. Furthermore,

more advanced filtering methods could be introduced. For instance, personalized recom-

mender systems can reduce the amount of data by learning the preferences of the user [107]

and showing only relevant information.

For future work, several additional aspects of compact visualizations remain interesting

and require further investigation. The current comprehensibility measures for compact

explosion diagrams and compact annotations are based on perceptual considerations and

observations derived from hand-made illustrations. These measures require a more formal

evaluation. Furthermore, we want to investigate compact visualizations for other types of

visualizations and their corresponding comprehensibility measures.

Another future research direction is the investigation and evaluation of the suitability

of scene modifications for different AR applications. Although the modifications may be

distracting the user, we believe that there are valid application cases. Scene modifications

may be applicable to posters showing augmented content or table-top applications, where

interferences between content should be resolved to avoid occlusions. For instance, an

element of a poster may be used as control element such as a button and should not be

occluded by a visualization. Using motion constraints for scene objects, the amount and

type of modification can easily be controlled.

The evaluation of different degrees of clustering in the adaptive information density

display was not conclusive with respect to the usefulness of clustering. We believe that the

number of items presented during the study was not large enough to have an impact on the



3.3. Conclusion and Future Work 97

perception of the participants. Furthermore, the described studies did not relate the items

shown in the AR view to the actual content of the AR view. We believe that clutter may

have a stronger influence on search and recall tasks, when users must relate the items to

the real world context. With an increasing amount of clutter, real world features become

increasingly occluded. Therefore, it may be more difficult to identify features of the world

that items relate to.

In addition, an open issue is the integration of real world geometry into account dur-

ing the hierarchical clustering phase. Using more sophisticated spatial information, the

clustering can avoid grouping items that are located, e.g., in different floors of a build-

ing. Having such spatial information would also be an interesting extension of the user

interface.

Until here, we also did not investigate temporal coherence for compact visualizations.

This important aspect will be discussed in the following chapter (see Chapter 4).





Chapter 4

Temporally Coherent View

Management

Contents

4.1 Compact Visualization: Optimizing for Temporal Coherence . 100

4.2 Hedgehog Labeling: Stable Annotations in Object-space . . . . 104

4.3 Evaluating Coherence in View Management . . . . . . . . . . . 114

4.4 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . 130

Until here, we have presented methods to create layouts for different types of infor-

mation by either filtering or aggregating the input data, before presenting the filtered

information. The information is presented in a layout that is created for a certain view-

point. However, in AR, a user can constantly change the viewpoint on the data, which

causes changes to the layout. These changes may be very distracting for users and also

hard to follow. Therefore, to avoid distracting movement, the layout should be temporally

coherent across adjacent viewpoints.

In this chapter, we extend our compact visualizations with the aspect of temporal

coherence to avoid distracting changes and visual clutter of the layout. We achieve these

goals by influencing the selection of the representatives that make up the final layout

already in the filtering step. Furthermore, we present a new algorithm for creating layouts

of annotations that completely works in 3D object space and, therefore, is much more

stable during camera motion than 2D view management techniques (see Section 4.1).

Note that, for our work on compact visualizations, we relied on a 2D view management

algorithm to create the annotation layouts. However, while performing this research, we

99



100 Chapter 4. Temporally Coherent View Management

discovered that 2D view management techniques are not optimal for creating layouts of

annotations in AR, as frequent changes occur due to the constantly moving AR camera.

Therefore, we present a new constrained 3D view management algorithm for annotations

that inherently is more stable than a 2D view management solution (see Section 4.2).

After introducing our novel 3D view management system, we perform a user study to

quantitatively compare it to more traditional view management systems. The study shows

that our 3D layout system, which registers labels as 3D objects relative to the annotated

object, outperforms the reference systems in a task to locate and relocate labels (see

Figure 4.3).

4.1 Compact Visualization: Optimizing for Temporal Co-

herence

Compact visualizations find an appropriate layout for presenting information from a cer-

tain viewpoint. However, the optimization results for adjacent viewpoints may differ, for

instance due to changing occlusion relationships. Hence, the layout may change frequently

during camera motion. Strong layout changes grasp the user’s attention and, thus, may

distract her from exploring the data. We show how to reduce these distractions by creating

temporally coherent layouts during optimization using two different approaches. The first

approach creates layouts which minimally differ from the neighboring layouts. We call

these layouts “aligned”. A layout is aligned, if it has both a high similarity to its neigh-

bors and a high quality in regard to the other quality parameters. The second approach

does not take neighboring layouts into account, but optimizes the layout of the current

viewpoint to minimize the amount of interferences when changing the viewpoint. Both so-

lutions can be integrated in a straight-forward manner directly into the general framework

for creating compact visualizations by simply defining additional quality criteria.

4.1.1 Minimally different neighbors

By using aligned layouts, we can reduce distracting layout changes by minimizing varia-

tions between neighboring viewpoints. For this purpose, the difference between the current

layout and the neighboring layouts is estimated and incorporated into the optimization

using a new quality criterion. The difference between two layouts is determined by com-

puting the difference Diff(L1, L2). The alignment quality QAlignment is then determined

as follows in (4.1).



4.1. Compact Visualization: Optimizing for Temporal Coherence 101

Figure 4.1: Aligned compact explosion diagrams. (a) and (c) depict the optimal layouts
for the respective viewpoints from the set of prepared optimal layouts. Note the difference
between the layouts, when changing between these two (green arrow). (b) To reduce the
amount of changes during camera motion, we switch to aligned layouts and present these
during transition (blue arrows). Note how in the aligned layout only small changes are
performed to ensure that all parts are visible. After finishing the transition, we switch to
the optimal layout for the current viewpoint.

QAlignment = 1−Diff(L1, L2) (4.1)

By incorporating the difference between two layouts into the layout optimization, we

generate layouts that differ only minimally. We also consider the other quality criteria

for creating comprehensible visualizations. However, aligned layouts may not always rep-

resent the absolute best layout for a viewpoint. Therefore, we optionally switch back to

the optimal layout once the camera movement stops. This can be modeled by dynam-

ically adapting the weights of the quality criteria. More weight is added to QAlignment

during movement, while the weight is reduced to zero, when the camera is not moving.

We achieve interactive frame rates for temporally aligned layout transitions by preparing

aligned layouts for each optimal layout.

The difference Diff(L1, L2) between the exploded layouts L1 and L2 is determined by

the l2 distance of the respective descriptors containing the positions of the parts relative

to the center part of the explosion layouts. Let Pi,1 and Pi,2 be the positions of the same

parts in two layouts L1 and L2, and let P0 be the origin of the model. Then, for each

Pi,j , we calculate the vector Vi,j from P0 to Pi,j and normalize it with the length of the

3D diagonal of the fully exploded model Diag3d,exp (4.2).



102 Chapter 4. Temporally Coherent View Management

Vi,j =
(Pi,j − P0)

Diag3d,exp
(4.2)

We calculate the difference Diff(L1, L2) between two layouts as the Euclidean length

of all distance differences between each Vi,1 and Vi,2. The more similar the layouts, the

smaller the difference Diff(L1, L2) (4.3).

Diff(L1, L2) =

√

√

√

√

n
∑

i=1

|Vi,1 − Vi,2|2 (4.3)

Figure 4.1 demonstrates the alignment of layouts in neighboring viewpoints for com-

pact explosion diagrams. Note the differences between the best layouts of the respective

viewpoints ((a) and (c)), and the smaller difference between the corresponding aligned

layouts ((a) and (b)). When the camera movement starts, we switch to aligned layouts,

in order to reduce the amount of variations over time. Note that, although the changes

are minimal, layouts are created in which all parts are visible. Hence, QAlignment is able

to work in combination with other criteria.

4.1.2 Minimize potential distractions

Using aligned layouts for neighboring viewpoints works well for visualizations with a man-

ageable amount of changes and interferences, such as with explosion diagrams. Parts can

only be exploded in certain patterns, which limits the degrees of freedom of moving parts.

Therefore, the amount of changes between adjacent viewpoints is limited. However, the

placement of other visualizations, such as annotations, may be far less constrained. Even

small camera motions may cause a change of label positions, label order and anchor points

in adjacent viewpoints. Hence, it is difficult to find minimally different adjacent layouts.

Instead, we can minimize the distractions during viewpoint changes by optimizing the

layout of the current viewpoint for avoiding any distractions.

For compact annotations, distractions arise from order changes and representative sub-

stitutions, which change the respective anchor points. When we lock the set of anchor

points during viewpoint changes, the order of annotations varies uncontrollably. In con-

trast, fixing the order of labels, while varying the anchor points to resolve leader line

intersections, eventually leads to frequent changes in the visualization. Therefore, we lock

both the order of annotations and the anchor points to ensure temporal continuity.



4.1. Compact Visualization: Optimizing for Temporal Coherence 103

Figure 4.2: Distributing representatives. We spread labels over the layout to support
frame coherent updates. (a) Fixing both the order of labels as well as their anchor points
to the most comprehensible compact annotation will result in a large amount of line inter-
sections, while the camera moves around the object. (b) By maximizing the distribution
of annotations in the layout of the first viewpoint, line intersections can be reduced. Only
a few line intersections appear while moving the camera to the second viewpoint.

Furthermore, we aim to minimize distracting line intersections between viewpoint

changes. Figure 4.2(a) shows that after changing the viewpoint, a large number of leader

line intersections may occur. To minimize such leader line intersections, we maximize the

distance between labels during re-selection of representatives using QDistance. In addition,

we add a quality criterion QAnchor, which implements the heuristic that anchor points ly-

ing farther apart are less likely to produce line intersections between the associated labels.

The new criterion maximizes the minimal distances between the projected representative

anchor points Ai, as seen in (4.4).

DistAnch(i,j) =
|Ai −Aj |

√

ImageWidth2 + ImageHeight2

QAnchor =
1

n

n
∑

i=0

(

n

min
j=0,j 6=i

(DistAnch(i,j))

)

(4.4)

The resulting layouts consist of elements which are less prone to leader line intersections

in close viewpoints and, therefore, contain less distractions. Figure 4.2(b) shows that after



104 Chapter 4. Temporally Coherent View Management

maximizing the distribution, only few leader line intersections occur. We resolve the

remaining intersections once camera movement stops by animating the transition to the

optimal intersection-free layout for the current viewpoint. Such an approach to updating

the layout of annotations was also suggested by Ali et al. [3], who do not update the layout

of annotations during user interaction, but only after the viewpoint stabilized.

4.2 Hedgehog Labeling: Stable Annotations in

Object-space

A number of different techniques have been proposed to control the placement of ex-

ternal labels. For instance, for our work on compact annotations, we used the floating

labels approach of Hartmann et al. [56]. They have been successfully applied to produce

high quality layouts for desktop applications. However, since most of the existing tech-

niques operate in 2D image space, they are prone to unpredictable changes over time.

This happens, because the distribution of the projected 3D points changes during camera

movements, which can force the view management system to frequently re-order external

in labels image space. With increasing amount of label movement and re-ordering, the

label motion becomes difficult to follow, and the resulting layout becomes unstable over

time. This is illustrated in Figure 2.7 and Figure 2.8.

To overcome the problems of such floating labels, traditional desktop applications

often display external annotations only when camera movement stops. However, in AR,

the camera is attached to the user, and thus it is always in motion.

In this section, we present a new view management technique for external labels in 3D

space. Since frame incoherent placement of labels is often caused by unpredictable changes

of the projection of 3D points into the image space, we annotate the object of interest

in 3D object space using external 3D labels. During camera movements, this strategy

enables us to apply arbitrary 3D transformations not only to the 3D objects in the scene,

but also to their labels. Since labels follow object transformations, our approach allows

to better follow label movements over time.

To further support this objective, our view management approach applies changes to

the layout based on the 3D geometry of the label. A 3D label consists of a 3D annotation,

a 3D pole, and an anchor point. We only allow adjustments to the length of the pole,

while the orientation of the pole is fixed in object space. Figure 4.3 illustrates this strategy,

which resembles a “hedgehog”. Its application to AR is shown in Figure 4.4(a).



4.2. Hedgehog Labeling: Stable Annotations in Object-space 105

(a) (b)

Figure 4.3: Illustration of view management in 3D space. (a) External labels occlude
each other. (b) Instead of searching for an occlusion free layout in 2D image space, we
adjust 3D properties of the label’s geometry (in this case the length of the pole) to resolve
occlusions between the annotations.

While this approach produces aesthetic and stable layouts, it may stack labels which

anchor points are located close to one another. To resolve stacked label layouts, we intro-

duce layout strategies operating on a 3D object space approach. For example, Figure 4.4(b)

shows the result of a balanced label distribution, which has been computed based on a set

of planes in 3D space.

Defining all elements of a label in 3D object space allows us to generate more pre-

dictable layout changes and thus less distracting label motion during camera movements.

Therefore, we build an external label out of a 3D annotation, a 3D pole (leader line equiv-

alent in 3D), and an anchor point. A 3D annotation can be a 3D or a 2D object (text,

image) projected onto a billboard (Figure 4.3(b)).

Our view management approach consists of an initialization phase followed by an

update phase. In the initialization phase, we place a 3D label for each element which

we want to annotate. For each 3D label, we define the position of its anchor point,

the orientation and length of its pole as well as the orientation of its annotation. After

initializing all labels, we start updating the layout to resolve occlusions and to maintain

readability. Based on the readability, layout updates can be continuous or discrete.

4.2.1 Layout Initialization

During initialization, we position each label in the 3d scene. The behavior of a label and

thus the appearance of the layout at run-time depends on the design of a 3D label and the



106 Chapter 4. Temporally Coherent View Management

(a)

(b)

Figure 4.4: View Management in 3D space. (a) Label placement has been constrained by
3D poles which originate from the center of the object. To resolve occlusions, we move
labels along the pole only. (b) Label placement has been constrained by a set of planes
in 3D space. Labels are allowed to move within a plane, which is fixed in 3D space. To
avoid constant label motion, the label positions are frozen after creating the layout for
a viewpoint. The placement is updated only when the viewing angle to the plane grows
larger than a threshold.

strategy to resolve occlusions. In this section, we discuss design decisions, such as where

to place or in which direction to move a 3D label and which constraints this implies.

Orientation of 3D Annotation. The most common 3D annotation is a flat two-

dimensional surface in 3D space, which is attached to the pole on one side. This configu-

ration allows to rotate the surface around its pole only. While such 3D labels appear very

natural, they easily suffer from perspective distortion, making the information unreadable

from certain points of view. If the angle between the view vector and the 3D pole is

high, a rotation of the annotation around the pole allows re-orienting the label so that

its information can be easily read. However, this is not possible if the angle between the

pole and the view vector is small. Such a configuration will cause the annotation to rotate



4.2. Hedgehog Labeling: Stable Annotations in Object-space 107

almost around the user’s view vector.

Since the orientation of the view vector can change arbitrarily at run-time, we cannot

guarantee a sufficiently large angle between the view vector and a 3D pole. Therefore,

we allow for unconstrained rotations of the annotation. Instead of attaching one side of

the annotation to the upper part of the pole, we attach the tip of the pole to the center

of the annotation. This allows to rotate the annotation around all three axis of its local

coordinate system which is placed in the center of the annotation. During initialization,

we orient annotations parallel to the screen.

Position of 3D Anchor Point. To easily link the annotation to the 3D object, we

have to place the anchor point of the label on the 3D object. The most unambiguous

position is its center, which we approximate using the center of its bounding sphere.

Length of 3D Pole. The pole has to be long enough so that the projection of the

annotation is not covering the 3D object of interest. Yet we want the pole length to

be minimized, so that annotated scenes are compact. Since we resolve occlusions after

the initialization phase, we can just ignore the length of the pole during initialization by

placing the annotation at its anchor point.

Orientation of 3D Pole. When placing an external label in 3D space, the most

natural orientation of the pole follows the direction of the surface normal at its anchor

point. However, as demonstrated in Figure 4.5(a), this strategy easily suffers from crossing

leader lines after projecting to camera space. Notice the crossing between the pole of the

label of the engine and the one of the right door of the car. As the camera rotates around

the object, other leader lines cross in image space.

In order to avoid crossing leader lines, we orient 3D poles using the normalized vector

which originates from the center of the object’s bounding sphere and passes through the

anchor point of the 3D label. This strategy is illustrated in Figure 4.5(b). Note that the

leader lines do not intersect anymore.

4.2.2 Layout Updates

After initializing labels, or after the camera has moved, occlusions with other labels or

scene objects may occur. Since finding the optimal place for all labels has been proven

to be NP-hard [92], we formulate the problem of minimizing occlusions as a force-based

optimization problem. Our approach is inspired by the image space approach of Hartmann

et al. [56]. However, unlike Hartmann et al., we assume constrained motion in 3D space.

One Degree of Freedom. A simple constrained motion would allow every annotation



108 Chapter 4. Temporally Coherent View Management

Figure 4.5: Normal vs. radial 3D pole orientation. (a) Orienting the pole using the face
normal at the anchor point results in crossing poles in image space. (b) To avoid crossing
poles, we orient 3D labels radially from the center of the bounding sphere of the object,
i.e., aligning them with the vector pointing from the center of the bounding sphere to the
anchor point of the label.

to slide along the pole direction (one degree of freedom). Figure 4.6 demonstrates the result

of this strategy. Notice how occlusions have been resolved for the two annotations, which

have been marked with a red exclamation mark.

Figure 4.6: Resolving occlusions using one degree of freedom. To provide predictable
movements, we allow moving the 3D label along the pole only. The upper image suffers
from two occluded annotations, which we marked using a red exclamation mark. By
extending the length of the pole, the system is able to resolve the occlusions.

Three Degrees of Freedom. Resolving occlusions using a single degree of freedom

only produces a small amount of very predictable motion. However, this strategy tends

to stack annotations if poles have similar orientation in 3D space (see the upper image



4.2. Hedgehog Labeling: Stable Annotations in Object-space 109

in Figure 4.7). To generate more balanced layouts, we additionally allow to move the

annotation in the image plane (two additional degrees of freedom). However, to ensure

that the pole is always connected to the annotation, we limit the motion in the image

plane to the size of the annotation.

This strategy is illustrated in Figure 4.7. The label layout in the upper image suffers

from a number of stacked labels. For example, the three annotations at the bottom (left

gear, chassis and right gear) form a stack in y-direction. To resolve this stack, our system

moves the annotation of the chassis in the image plane, until it fits next to the gear. Since

the orientation of the pole for the right gear does not allow to place the annotation next

to the gear, our system cannot resolve this stack. While a perfectly balanced layout may

require more freedom of movement, this approach generates reasonably good results with

a limited amount of predictable movements for a small set of stacked labels.

Figure 4.7: Resolving occlusions using three degrees of freedom. Stacked annotations
appear for labels with poles oriented at a similar angle. Stacks have been marked in
the upper image using red exclamation marks. To resolve stacks, we allow moving an
annotation along the pole and within the X/Y plane of the annotations local coordinate
system.

Plane-Based Occlusion Management. Our approach to stabilize the layout avoids

re-orientations of 3D poles. However, this performs poorly, if many anchor points are in

or close to a plane in 3D space. Such configurations lead to generate label poles inside a

narrow slab and result in layouts suffering from stacked annotations, if rendered from a

viewpoint perpendicular to these planes.

For example, most of the anchor points used to label the ship in Figure 4.8(a) have



110 Chapter 4. Temporally Coherent View Management

(a) (b) (c)

(d)

Figure 4.8: Plane-based occlusion management. The anchor points in this example have all
been placed close to the x/y plane of the model. (a) The center-based labeling approach,
which uses a common center to orient labels, generates a clear layout if the camera is
oriented along the z-axis. (b) If the camera orientation is similar to the x- or the y-axis,
the layout suffers from heavily stacked annotations. (c) Since our occlusion management
approach is not able to resolve heavy stacking, we group annotations into 3D planes. This
allows us to generate more balanced layout, while still providing stable layouts over time.
In this example, we use three different planes, one in the front, one in the middle and one
for anchor points in the back of the ship. (d) The plane-based label placement with planes
generated from viewing along the z-axis.

been placed close to the x/y plane of the coordinate system of the 3D CAD model. This

causes most of the label poles to lie in the close proximity of the x/y plane. When looking

at the object along the z-axis, the layout generated with our approach seems adequate

(Figure 4.8(a)). However, if the viewing direction becomes more similar to the x-axis, the

3D poles line up in image space, causing the algorithm to stack annotations, which cannot

be resolved with the constraints we introduced.

To balance the layout, we have to relax our constraints. Therefore, we group all

labels into a set of planes, and we allow searching for suitable positions for annotations



4.2. Hedgehog Labeling: Stable Annotations in Object-space 111

within an entire plane. We orient the planes parallel to the view plane, and we place them

equidistantly in the screen-aligned bounding box of the object. Each label is automatically

assigned to the plane that is closest to its anchor point. This allows us to apply any image-

based view management approach from the current point of view. Specifically we achieve

balanced layouts using the spring embedding approach proposed by Ali et al. [3]. The

result can be seen in Figure 4.8(c) and Figure 4.8(d). Both images have been rendered

with the same groupings, but from different points of view using differently oriented planes.

Note that the stacking of annotations has been resolved.

This approach generates more balanced layouts. However, if occlusions will be resolved

in each frame, this approach introduces frame inconsistencies which are similar to those

resulting from a force field approach in image space. Therefore, this approach is best

applied in combination with a discrete update strategy.

To reduce the amount of motion for plane-based occlusion management, we freeze the

layout after resolving occlusions, and we update the annotations only if the angle between

the view vector and the normal of the annotation’s plane grows larger than a user-defined

threshold. This behavior is demonstrated in Figure 4.8(d). The layout has been generated

from the point of view in the upper image of Figure 4.8(d). Both renderings in the lower

part of Figure 4.8(d) use the same layout from a slightly offset point of view.

While we freeze the position of an annotation within a plane, we still update its ori-

entations in every frame so that it always faces the camera. This approach works well

for sufficiently distant labels within the plane, but it may cause occlusions with other

annotations, if the layout algorithm places them close to each other. For example, both

Figure 4.9(b) and 4.10(a) use our plane-based occlusion management approach. How-

ever, because the annotations in 4.10(a) have been placed close to each other, occlusions

between annotations appear during camera movements. We can enforce a certain spacing

between annotations by adding a force to layout algorithm which maintains the spacing.

However, with an increasing amount of annotations, this approach pushes annotations

further outwards.

Therefore, we support an additional discrete update strategy. Since annotations cannot

occlude each other if they lie in the same plane, we also support freezing the orientation

of annotations (Figure 4.10(a)). This allows us to avoid occlusions between annotations

which lie in the same plane, however, this strategy introduces perspective distortions of

annotations. Therefore, it should be used only if necessary and in combination with a

small angle between layout updates.



112 Chapter 4. Temporally Coherent View Management

4.2.3 Implementation

Our view management prototype runs in real time (30Hz) for all presented illustrations

and scenarios with a 640x480 rendering resolution. We deployed our application prototype

on a PC running Windows 7, equipped with an Intel i7 CPU quad-core 2.66GHz, 12 GB

RAM and an Nvidia 780GTX graphics card. The software was implemented in C++ using

OpenSceneGraph1, an open source scene graph library. The AR framework used in this

project uses KinFu, an open source implementation of the KinectFusion approach of Izadi

et al. [65], which is available through the Point Cloud Library [114]. KinFu was operated

with a Microsoft XBox360 Kinect depth sensor.

(a)

(b)

Figure 4.9: Center-based versus Plane-based Label Placement. (a) Center-based labeling
causes unbalanced layouts for this configuration. (b) This can be resolved using plane-
based label placement.

1http://www.openscenegraph.org



4.2. Hedgehog Labeling: Stable Annotations in Object-space 113

(a)

(b)

(c)

Figure 4.10: Center-based versus Plane-based Label Placement. (a) Plane-based label
placement may suffer from occluding annotations if annotation have been placed close to
each other. (b) To avoid such occlusions, plane-based label placement in combination with
freezing the orientation of annotations can be used. However, this introduces perspective
distortions and should be used with care. (c) For this configuration, center-based label
placement creates appealing results which neither suffer from occlusion nor from distortion.



114 Chapter 4. Temporally Coherent View Management

4.2.4 Comparison of Variations

Figure 4.10 allows side-by-side comparison of center-based and plane-based label place-

ment. Figure 4.9(a) uses the center-based approach. Even though we chose a rather

spherical object, most anchor points are placed on one side of the object, namely in the

face. Therefore, our center-based approach suffers from stacking of annotations and rather

long 3D poles. For this configuration, the plane-based approach creates more appealing

results (Figure 4.9(b)). However, plane-based label placement requires to re-orient the

label pole and, thus, should be used only if necessary.

When deciding to use a plane-based layout, one has to take into account that either

occlusions between the labels occur or perspective distortions of annotations. Occlusions

occur, when only the position is frozen, but the annotation is always aligned to the screen

(Figure 4.10(a)). This result is visually more equivalent to previous state-of-the-art 2D

view management technique [56] without their current restrictions. On the other hand,

perspective distortions appear when both position and orientation are frozen and anno-

tations are always plane-aligned (Figure 4.10(b)). Since both approaches may impair the

comprehensibility of the visualization, center-based 3D label placement should be consid-

ered if anchor points are well distributed around the object of interest (Figure 4.10(c)).

4.3 Evaluating Coherence in View Management

In this section, we present a formal user evaluation, which compares view management

algorithms that continuously update the layout to algorithms that only update the layout

at discrete points in time. To the best of our knowledge, the temporal behavior of labels

over time has never been part of an evaluation of different view management algorithms.

Literature usually describes a set of constraints and methods to enforce these constraints

by continuously updating the layout. An open question is if such updates have a negative

impact on the performance of a user during certain tasks, because they constantly change

label positions.

Our intuition was that even though discrete view management algorithms cause vi-

olations of the layout constraints during viewpoint changes, they would outperform the

continuous versions in search and select tasks that are typical for AR applications using

annotations. For this purpose, we chose to evaluate common force-based view management

algorithms that work in 2D image space [56], but also in 3D object space [104, 129], such

as the hedgehog labeler presented in Section 4.2. Based on our findings, we put forward



4.3. Evaluating Coherence in View Management 115

design recommendations for view management systems.

Our focus lies on handheld AR scenarios, which typically exhibit constant viewpoint

changes during interaction. We limit ourselves to view management approaches that

use external labels, because Coelho et al. [28] have shown that external labels are less

ambiguous in case of tracking errors.

4.3.1 View Management Algorithms

In the following, we review the four view management techniques that we evaluated in

the experiment. The implementations enforce common constraints found in hand-drawn

illustrations [57]: Place annotations in the vicinity of the object (R1), avoid overlaps

between annotations and the annotated object (R2), and avoid crossing leader lines (R3).

The four techniques vary in combinations two factors: the update approach, and the

space in which the annotations are described and simulated algorithmically. The update

approach consists of the levels continuous and discrete. Continuous means that the view

management algorithm continuously updates the layout of annotations to enforce the

layout constraints. Discrete means updates are applied to the layout only at discrete

points in time based on certain conditions, such as the amount changes of the viewpoint.

In terms of space, annotations can be described in either 2D image space or 3D object

space. In 2D space, the view management algorithm treats annotations as 2D labels,

which are represented and simulated in 2D screen-space. In 3D space, view management

treats annotations as 3D objects that are part of the 3D scene and therefore also part of

the object-space of the annotated object.

View management algorithms in AR require knowledge about the annotated scene. We

provide this knowledge by registering virtual 3D geometry to the world. This geometry is

then used to resolve collisions between labels and the annotated object. All implemented

algorithms use the screen-aligned bounding box of the annotated objects as collision ge-

ometry. The collision geometry is used to detect overlaps between annotations themselves

and also annotations and the object. Note that also for the 3D implementation, the 2D

bounding box is used to detect occlusions in screen-space.

4.3.1.1 Continuous Updates

Continuous view management algorithms update the layout in each frame in order to

resolve violations of the defined layout constraints.



116 Chapter 4. Temporally Coherent View Management

Screen-space Labeling. Screen-space labeling approaches are the most common view

management systems and are used in VR and AR applications [12, 51, 56]. They mainly

define labels as 2D geometry that is projected to a 2D position in the image-plane. The

layout algorithm updates the 2D position of the label in the image plane. In VR appli-

cations, the viewpoint often rotates around an object using an orbit camera manipulator

metaphor, which creates stable and smooth viewpoint transitions. Although the layout

updates during the viewpoint transitions, the viewpoint is stable after the interaction.

Therefore, the annotations can settle into a stable position. In AR applications, the view-

point typically changes unpredictably. Consequently, layout updates are very frequent,

even though the user may perform only small unintentional adjustments to the viewpoint.

Another problem of screen-space layout approaches is inherent to the description of the

labels as 2D objects that are assigned to 2D positions in absolute screen coordinates. Each

time the user changes the AR viewpoint, the location of the annotated object changes,

while the 2D position of the labels stays the same. Therefore, the layout algorithm must

update the label positions, causing a delay in the label placement. This results in an effect,

where the labels are dragging behind the object during camera movement.

View management that treats labels as 3D objects does not suffer from this problem,

because annotations are placed relative to the object. To be able to make a fair comparison

between 2D and 3D in our evaluation, we compensate for this drifting in the 2D case.

To achieve this, we project the transformation of the current AR camera pose into 2D

image space and apply the 2D translation and rotation to the label layout. Hence, despite

camera pose changes, the 2D labels stay relative to the object annotations without drifting

in image-space.

For this screen-space labeling approach (L2D cont) we use the floating labels approach

presented by Hartmann et al. [56]. Like Hartmann et al., we use separate forces to enforce

the three layout constraints. One force resolves collisions (R2) by detecting collisions

between labels in 2D screen-space and pushing the labels away from each other, using a

direction vector that spans the centers of the 2D labels. The same applies to collisions

between 2D labels and the projected 2D bounding box of the annotated 3D geometry.

To avoid labels moving too far away from the annotated object (R1), another force pulls

the labels back towards the point it annotates. Crossing leader lines are resolved (R3)

by switching the place of the labels that exhibit crossing leader lines. This is realized by

applying a force that is orthogonal to the respective leader line.



4.3. Evaluating Coherence in View Management 117

Object-space Labeling. For reference, we include a 3D space continuous layout al-

gorithm (L3D cont) in our study that treats the labels as 3D objects and assigns 3D

positions that are relative to the object. Due to the continuous layout updates, the 3D al-

gorithm exhibits the same problems of temporal coherence as the 2D version (L2D cont).

However, in contrast to L2D cont, the 3D labels stay relative to the annotated object,

because the camera pose is naturally applied to the 3D labels.

Only very few view management algorithms treat labels as 3D objects placed relative

to the object. One such approach is the plane-based hedgehog labeling presented in

Section 4.2, which we use for this continuous approach. Similar to L2D cont, it enforces the

layout constraints using forces. However, the hedgehog labeling does not move the labels

in 2D screen-space, but on 3D planes that are placed relative to the object and oriented

towards the screen. While the original approach freezes the orientation of these planes

and the label position after an initial layout is calculated, we update both continuously so

that they are always oriented towards the screen. Hence, the algorithm can be regarded

as the application of the 2D force-based approach [56] to the 3D case.

4.3.1.2 Discrete Updates

The discrete view management approaches used in the evaluation are based on the behavior

of the plane-based hedgehog labeling approach of Section 4.2. Once the initial layout for

a viewpoint is calculated, layout updates are stopped. Only after the viewpoint of the

annotated object changes beyond a certain threshold, the view management algorithm

updates the layout to resolve violations of the layout constraints.

For the discrete view management used in our evaluations, we chose the extreme case

of not updating layouts after calculating them for the initial viewpoint. Once the layout is

calculated for a viewpoint, we freeze the layout, so that labels keep their location relative

to the object. This is a reasonable assumption, because we designed our study in a way

so that users investigate an object mainly from one dominant view direction.

Screen-space Labeling. The discrete screen-space labeling system (L2D disc) is

based on the continuous implementation (L2D cont). To freeze the layout, we follow an

approach similar to the one used to create temporally coherent compact annotation

layouts (see Section 4.1.2).

Once the layout for a viewpoint is calculated, the annotations must keep their position

relative to the object. We can achieve this by simply stopping the layout updates. Because



118 Chapter 4. Temporally Coherent View Management

we still apply the camera pose to the 2D labels, as described for L2D cont, the labels stay

relative to the object. However, movements that change the scale of the annotated object

cause the layout to degrade. When the user moves away from the object, the distance

between the labels and the annotated object will increase; when the user moves closer, the

distance will decrease and the labels will occlude the annotated object.

Therefore, the layout algorithm must update the positions of the labels so that they

stay at the same relative distance to the object. For this purpose, we freeze the layout

only partially by selectively deactivating forces. First, we still resolve overlaps between

the annotations and the annotated object (R2). This is important to keep the relative

distance of the label from the object, when moving closer to the object. Any annotations

that would overlap with the geometry are pushed away from the object. When moving

the camera further away from the object, the distance of the labels relative to the object

increases. Therefore, we also activate the force that pulls labels towards the object (R1).

To avoid that the layout algorithm resolves crossing leader lines (R3), we turn off this

force, once the layout is frozen.

We also keep resolving overlaps between the annotations themselves (R2), because

the 2D labels otherwise would continuously occlude each other during viewpoint changes.

Note that this is not an issue in the 3D plane-based hedgehog labeling approach, where

label 3D position and 3D orientation are frozen in the plane. Therefore, labels in the same

plane do not occlude each other, while occlusions between labels in different places can

easily be resolved with camera movement. 2D labels are always located in the image plane

and always oriented towards this image plane, which can quickly cause occlusions.

Because the layout update still continues, the labels will move away from their “frozen”

position. To ensure that the labels stay at the same position relative to the object after

freezing the layout, we use an additional force, which pushes labels back to their relative

position during viewpoint updates. For this purpose, we calculate a line from the center

of the overall geometry through the position of the label when it was frozen in place.

The force constantly pushes the label towards this line. Note that this force works in

combination with the other forces. Therefore, the label does not strictly stay on this line,

but is forced to stay close to it.

Using this implementation, we can create a discrete 2D layout that places 2D labels rel-

ative to the object and preserves their ordering. Unlike the discrete 3D layout (L3D disc),

the layout algorithm still updates the annotations, which is visible as small label move-

ments during viewpoint changes. However, this is the closest we could come to a feasible



4.3. Evaluating Coherence in View Management 119

discrete 2D layout.

Object-space Labeling. To achieve a discrete object-space labeling (L3D disc), we

use the plane-based hedgehog labeling approach of Section 4.2. Once the layout has been

calculated for a viewpoint, the layout algorithm stops updating and freezes the layout of

the current viewpoint.

In contrast to the discrete 2D algorithm L2D disc, the discrete 3D layout truly is frozen

and does not require any kind of layout update, because the 3D labels are placed relative

to the object. The camera pose is naturally applied to the 3D labels. Eventual occlusions

between annotations and the annotated object can be resolved by the user due to the

parallax effect of the 3D planes that place the labels.

4.3.2 Evaluation: Update Approach and Spatial Representation

In this evaluation, we investigate the task performance of the four implementations of view

management systems. For this purpose, we use the previously described view management

systems, which differ in the approach they update layouts (continuous, discrete) and in

terms of their algorithmic and spatial description (2D space, 3D space).

Scenario. The experiment simulates an AR learning scenario, in which a user is con-

fronted with an unfamiliar object. We assume that a user will typically first get an

overview of the parts from a more distant viewpoint, before going closer and investigating

the details of the annotated object. Additional labels provide further information of the

annotated parts in the overview. A user can investigate a part by following the leader line

to its anchor point, thereby assuming a closer viewpoint of the object.

To avoid that participants are familiar with the object of the study, we use a complex

3D object that has no resemblance with any real world object. It consists of annotated

blocks of approximately equal size and uniform color. Therefore, participants do not have

salient clues, with which they can associate the location of the anchor points of labels.

We assume that, when using such an unfamiliar and complex 3D object, the perceived

visual clutter is consistent among the participants and not a result of prior knowledge of

the object, or any prior expertise, as described by Rosenholtz et al. [111].

Apparatus. The experimental code was written in C++ using OpenSceneGraph2.

Marker tracking was performed by an in-house natural feature tracker. The trackable

2http://www.openscenegraph.org/



120 Chapter 4. Temporally Coherent View Management

marker was printed on an A3 non-glossy paper (297mm x 420mm), and was placed as a

single item on a table, with sufficient room to move around the table (Figure 4.11).

The experimental application was deployed on a Windows 8 Microsoft Surface Pro 2

tablet, which featured an Intel Core i5-4300U CPU, 4GB DDR3-1600 RAM, 10.6 inches

1920x1080 px (208 ppi) screen with 16:9 aspect ratio. We used its internal 1.2 MP, 720p

rear-facing camera for tracking. The application received user input from the touch screen

of the device.

Figure 4.11: The experimental setup consisting of a free-standing table, a marker and the
Surface Pro 2 tablet.

Study design. We define three independent variables for this study: the update method

(continuous, discrete), the spatial description of labels (2D, 3D) and the distribution of

anchor points of the object (balanced, unbalanced). The variables regarding the update

method and spatial description directly refer to the previously described implemented view

management systems: 2D screen-space with continuous (L2D cont) and discrete update

(L2D disc); 3D object-space with continuous (L3D cont) and discrete update (L3D disc).

We included the distribution of anchor points as variable, because we wanted to inves-

tigate its effect on the behavior of labels during on the viewpoint changes. We speculated

that multiple anchor points grouped very closely together on the reference object would

cause more violations of the layout constraints and, therefore, stronger label movements in

continuously updating view management systems. In contrast to such unbalanced layouts

(Figure 4.12(b)), a more balanced distribution (Figure 4.12(a)) of anchor points would



4.3. Evaluating Coherence in View Management 121

(a)

(b)

Figure 4.12: Spatial distribution of anchor points. We speculated that the distribution
of anchor points would influence the amount of changes in the continuously updating
view management system. We used two different distributions in our study. (a) The
distribution of anchor points was balanced over the object. We expected fewer changes in
this condition, than in (b) the condition, where the anchor points were clustered on one
side of the model.

cause less changes. Note that the discussion of temporal coherence of compact visualiza-

tions in Section 4.1.2 follows the same argumentation of distributing anchor points over

the object.

The experiment followed a mixed-methods design, using a randomized, repeated-

measures design, with two factors being within-subject, and one factor being between-

subject. The within-subject factors were update method (continuous, discrete) and the

spatial description (2D, 3D), while distribution of anchor points (balanced, unbalanced)



122 Chapter 4. Temporally Coherent View Management

was a between-subjects factor. The within-subject factors corresponded to the four view

management systems, and each participant performed three repetitions, which lead to a

total of 12 tasks per participant. For each participant, the combination of factors and

their order was randomized using a Latin square.

(a) (b)

(c) (d)

Figure 4.13: Experimental Task. (a) The task started in the overview of all labels. Here
participants had to select labels in a sequence as indicated by the system. The sequence
was indicated by highlighting the corresponding number on the left. In this image, the
participant had to select 2 to continue with the next number. (b) After finishing the
sequence in the overview, the participant had to click on the labels of the sequence again.
Each time the user clicked, a cone would appear, with which the participant (c) had to
align the device. (d) After exploring each of the three labels in the closeup view, a cone
would appear that indicated participants to go back to the overview, to either continue
with the next iteration of the same task, or to finish the task.

As dependent variables, we measured the duration of each task and the duration of the

full trial. Furthermore, we measured error rate metrics and layout statistics: the amount

of wrongly identified labels, label order changes, leader line crossings, object space and

screen space movement of the relevant labels.



4.3. Evaluating Coherence in View Management 123

Task. A task consists of the following steps (Figure 4.13):

1 The participant must identify three labels of interest in a certain order in the

overview by clicking on them, then

2 physically move the viewpoint closer to each anchor point of the corresponding label

of step 1.

3 Repeat (1) and (2) three times for each factor-level combination

The purpose of the tasks is to simulate a learning environment, in which a user gets an

overview of an object from a viewpoint from which the whole object and its annotations

are visible. This is simulated with step (1), in which the participant had to select a

randomly generated sequence of three labels. The sequence was shown on the mobile

device (Figure 4.13(a)). After identifying and clicking on all the relevant labels, the

participants had to physically change the viewpoint of the device and move the viewpoint

closer to each anchor identified point (2). Participants performed the second step for each

label in the same order as they were presented in the first step. Before moving closer to a

label, they had to click on it again to select it. Clicking on a label would force participants

to look for the label by moving the device, which would trigger layout changes due to

violations of the layout constraints.

After clicking on the label, the system showed a transparent yellow cone, with which the

participants had to align the mobile device in order to continue the study (Figure 4.13(b)).

This step also enforced movement of the mobile device. The bottom of the cone indicated

the position the mobile device should be moved to, the tip of the cone pointed to the

anchor point of the identified label. The participant had to align the mobile device with

the bottom and look at the tip of the cone (Figure 4.13(c)).

Each cone had an angle of 45◦ from the ground plane. In addition, cones indicating

items on the left side of the model were extruded to the right, while the ones for the

right side were extruded towards the left side. Cones were also oriented 45◦ towards the

participants. For instance, the cone in Figure 4.13(b) indicates a location on the right side

and, therefore, is extruded to the left.

The cone disappeared when the alignment was correct, which indicated the participant

could continue with the task. We introduced a positional and angular tolerance to the

alignment, to avoid that participants spent too much time aligning the view. During the

trials, we did not experience issues with participants having alignment problems.

After aligning the device with the cone, the task continued with the next label, until

the task would force participants to go back to the overview to trigger the next iteration of



124 Chapter 4. Temporally Coherent View Management

the task (Figure 4.13(d)), starting again with step (1). Overall, each participant repeated

the task twelve times, three times for each investigated view management system.

Hypotheses. We had two main hypotheses:

• H1: Task completion time differs between the view management systems.

• H2: Anchor point distribution has an effect on task completion time between view

management systems.

Regarding H1, we expected that the properties of the view management system influ-

ences the task performance during viewpoint changes. When a user changes the viewpoint,

a continuously updating system constantly resolves layout constraints. Therefore label po-

sitions and their relative relationship to each other and the annotated object may change.

We reasoned that such changes have a negative impact on repeatedly locating labels, as

required by the task of this evaluation. On the other hand, in the discretely updating

setups, the label layout ideally does not change, which makes it easier for users to keep

track of the locations of labels during viewpoint changes and consequently improves task

performance.

Note that the implementation of the investigated discrete 2D case (L2D disc) allows

labels to move to avoid excessive occlusions between them. However, the labels will never

change their relative order to each other. In addition, similar to the discrete 3D version

(L3D disc), L2D disc is also prone to layout violations in the form of crossing leader

lines. We expected L2D disc to perform better than the continuous 2D version L2D cont.

Furthermore, we generally expected the discrete update methods L2D disc and L3D disc

to outperform both continuous update methods L2D cont and L3D cont.

Regarding H2, we expected that the distribution of labels around the object influences

the view management systems in different ways. For this purpose, we defined balanced and

unbalanced distributions of annotated object, which also lead to unbalanced distributions

of labels around the object. The unbalanced layout grouped anchor points and therefore

labels closely together. We speculate that during viewpoint changes this setup would

cause more layout violations and, consequently, more label updates, than a balanced setup,

where anchor points and labels are well distributed. Accounting for both balanced and

unbalanced layouts, we hypothesized that there would be a performance difference between

the four systems, because the relative locations of labels would change to a different degree.



4.3. Evaluating Coherence in View Management 125

Procedure. Prior to starting the experiment, the participant was asked to fill out an

information and consent form along with a demographics questionnaire. We introduced

the participant to the experiment and gave a thorough explanation of the purpose of the

study and the used apparatus.

Before starting the experiment, the participant performed a set of training tasks with

the view management system of the current condition. During this task, the participant

was free to ask any questions regarding usage and control of the system. The training task

was a simplified version of the real task with only four labels, two of which were part of

the selection and identification task. The configuration of labels of the training task was

different than the configuration of the actual task, to avoid unintended learning effects.

Following the training task, the participant started the experimental task and completed it

without interruption. After finishing the task, participants were allowed to take a break,

before moving on to the next view management condition, which again started with a

training task. Between each view management system and after completing all trials,

the participant filled out questionnaires to collect qualitative feedback. The participant

was also incited to give additional verbal feedback in an interview after finishing the

experiment.

Participants were instructed to pay attention to solving the task to the best of their

abilities, and that the amount of time spent on each task was not relevant. As we log

metrics for both completion time and error rate metrics, it is generally considered that

they are inversely correlated. However, the aim was to not have the user rush through the

system to achieve best time, but emphasize a balance between time and quality.

Participants. A total of 24 participants (6f) were part of the experiment, aged 24-36

(M=29.3). They were recruited from both on and off the campus area. All participants

self-reported normal or corrected-normal vision. Familiarity with AR was self-reported to

be average, and familiarity with handheld mobile devices, above average on a 5-point scale.

Data collected from 24 participants × 12 tasks resulted in 288 tasks in total. The average

total completion time of the experiment per user was 24.5 minutes (SD=3.68min).

Results. The analysis was performed using a significance level of α = 0.05. The main

analysis method was a type III ANOVA and the Friedman test. Pairwise comparisons

in post-hoc tests were performed using Tukey’s test. The collected task performance

time violated normality and homogeneity. Therefore, we transformed the task time data

logarithmically.



126 Chapter 4. Temporally Coherent View Management

Figure 4.14: Interaction plot of factors rendering space and update method. There is a
significant difference between the discrete plane-based approach (L3D disc) and both 2D
approaches. There is a near significant difference between the continuous 3D approach
L3D cont and the discrete 2D approach L2D disc. Although there are no other significant
differences, the discrete 3D approach L3D disc appears to have a better task performance
than the continuously updating system L3D cont. The data indicates that the 3D ap-
proaches generally perform better than the 2D approaches.

A type III ANOVA found a significant main effect on spatial description (2D, 3D)

(F1,22 = 15.79, p = 0.00064, η2G = 0.084). This means that participants showed signifi-

cantly slower completion time in the 2D screen space rendering condition. No other main

effects or interactions were found in the analysis of log(time). However, the two-way inter-

action between spatial description (2D, 3D) and update method (continuous, discrete) was

near-significant at (F1,22 = 3.90, p = 0.061, η2G = 0.018). This near-significant interaction

between rendering space and update method is illustrated in Figure 4.14.

A follow-up Tukey test on the within-subjects factors revealed that the 3D discrete

system (L3D disc) significantly differs from both 2D systems (L2D cont, L2D disc) (both

p < 0.001). Furthermore, L3D cont showed near-significant difference from the discrete

2D system (L2D disc) (p = 0.085).



4.3. Evaluating Coherence in View Management 127

4.3.3 Evaluation: 3D Continuous and Discrete

We performed a followup study to collect more qualitative feedback on selected view

management systems. Although participants of the previous study already filled out a

questionnaire to collect qualitative feedback, the data did not yield any reliable results

regarding the preferences of systems. Based on the feedback gathered from participants, we

believe that participants could not distinguish between the four systems after completing

the experiment.

To avoid users mixing up the different systems, we focused on only two view manage-

ment systems. The first study identified L3D disc as the one achieving best task perfor-

mance. Therefore, we removed the 2D condition and compared L3D cont and L3D disc

in this study. Furthermore, the data from the first experiment indicated that unbalanced

layouts cause stronger layout changes than balanced layouts. Therefore, we removed the

independent variable regarding the distribution of anchor points of the object by focusing

only on the unbalanced scenario.

The apparatus, task and procedure were identical to the first experiment.

Study design. The study had a randomized, within-subjects design with one indepen-

dent variable: update method (continuous, discrete). In this study, we only used 3D view

management systems. Therefore, the update method directly refers to the continuous 3D

system (L3D cont) and the discrete 3D system (L3D disc). Participants performed the

same task as in the first study. For the two conditions, this produces a total of six tasks

per participant.

We collected participant satisfaction data using a 5-Likert scale questionnaire, which

queried the participant’s satisfaction with the system, immediately after a condition was

finished. Overall preference for a system was queried after the tasks for both systems had

been finished. In this questionnaire, we forced each participant to choose either one or the

other. Due to the random ordering of the first and second task, any imbalances due to

order effect should be avoided.

Participants. A total of 10 participants (all males) were part of in the second exper-

iment. All participants were recruited from the same pool of participants as in the first

experiment. No participant took part in both experiments. All self-reported normal or

corrected-normal vision.



128 Chapter 4. Temporally Coherent View Management

Results. The analysis used a significance level of α = 0.05. The main analysis method

for the user satisfaction data was a Wilcoxon signed-rank test. Analyzing participant

preference scores was performed using Exact Binomial test method.

We found a significant effect when analysing the difference in the responses of the 5-

Likert scale question of participant preference. The mean ranks of discrete and continuous

were 14 and 7, respectively: W = 3.5, Z = -2.21, p = 0.02734, r = −0.49. This is a strong

indication that participants were overall more satisfied with the discrete update system,

despite there being no significant differences in task performance.

For participant preference, participants were asked to make a binary choice of prefer-

ence for update system, choosing between either the continuous or discrete update system.

One participant did not have any preference and would not prefer a single system. The

outcome was eight participants preferring discrete (80% of participants) and one preferring

continuous (10% of participants). This indicates a strong preference towards the discrete

system. However, due to the small sample size, the Exact Binomial method did not yield

a significant difference. If undecided is counted as not preferring discrete updating, the re-

sulting proportion 0.8 of preference for discrete updating is near-significantly higher than

expected 0.5, p = 0.055 (1-sided).

4.3.4 Discussion

The first study clearly showed that the view management system, which treats labels as 3D

objects and creates a static layout (L3D disc), significantly outperforms the 2D continuous

view management system (L2D cont). This is in line with our expectation, because the

continuously updating layout seems to make it difficult for users to keep track of the

labels. However, L3D disc also outperforms its 2D counterpart L2D disc, which avoids

strong label motions by preserving the order of labels. This difference can be explained by

the fact that due to the limitations of the 2D description of labels, the implementation of

L2D disc does not freeze the discrete 2D layout as L3D disc does. L2D disc is constantly

updating the positions of labels to avoid occlusions. Furthermore, similar to L2D cont, the

labels are always oriented towards the screen, thereby lacking the static 3D representation

of L3D disc. By inspecting the performance data (Figure 4.14), we can also see that both

L2D disc and L2D cont exhibit very similar performance. This indicates that even though

L2D disc enforces a certain label order, the small motions of the simulation running in

the background and the lack of a static 3D representation has a negative impact on the

ability of users to locate and interact with labels.



4.3. Evaluating Coherence in View Management 129

The difference between the 2D systems and L3D disc could also be explained by the way

the systems are implemented. Despite both implementing similar force-based approaches,

the spatial representation of labels clearly influences the implementation of the systems and

thus can also have an impact on the label behavior. To isolate this factor, we also included

a continuously updating 3D layout (L3D cont) in our study. Indeed, the near-significant

difference between L2D disc and L3D cont hints at implementation specific differences.

The better performance of L3D cont supports our argument that the 3D implementations

view management systems should be preferred.

Although there was no significant difference between L3D disc and L3D cont, a visual

inspection of Figure 4.14 shows a difference in performance. In addition, the follow-

up study revealed that participants preferred a discrete 3D layout (L3D disc) for the

given task. Therefore, we can recommend frozen layouts 3D as the most suitable view

management system. A follow-up study should investigate the performance aspect with a

larger sample size.

Overall, we accept hypothesis H1. A combination of update method (continuous,

discrete) and spatial description (3D, 2D) has an influence on task performance. The

static layout of the discrete 3D view management system significantly outperforms the 2D

versions. A visual inspection of the performance data also shows better performance, when

compared to the continuous 3D version, which should be part of further investigations.

Regarding the second hypothesis H2, we did not find any significant difference in

task performance between balanced and unbalanced. Therefore, we reject hypothesis H2.

Nevertheless, in the collected data itself, we noticed a larger number of label changes when

the label layout was unbalanced. To reasonably compare this data across the systems, we

limit ourselves to investigating the data in which users were in the overview mode, i.e.,

the part of the task, where all labels visible on the screen and in focus, and the participant

must identify three labels correctly. Pooling all label order changes of the unbalanced

condition yields 1151 changes, the same for the balanced condition 457 changes. This leads

to approximately five changes per overview in the unbalanced condition and two changes

per overview in the balanced condition (20 participants × 4 systems × 3 tasks = 240

overviews). Even though the label order changes had no negative impact on performance,

it supports our assumption that layouts are prone to changes when anchor points are not

distributed well over the object and cluster in one region. Nevertheless, it appears that

label motion and the relative position of labels in 3D have a larger impact on performance

than the amount of label changes.



130 Chapter 4. Temporally Coherent View Management

4.4 Conclusion and Future Work

In this chapter, we discussed approaches to integrate temporal coherence into the opti-

mization process of compact visualizations. Furthermore, we presented a novel 3D view

management technique that is more suitable to create layouts of external labels in AR

than similar 2D approaches. 2D view management techniques place annotations in image

space. While they allow to create high quality label layouts for still images, they fail when

the viewpoint changes regularly.

With hedgehog labeling, we propose to place external labels in 3D object space and use

geometric constraints to control their motion. Our approach fulfills the desired objectives

of layout algorithms (e.g., avoiding overlapping labels) and also behaves consistently over

time during viewpoint changes, thus improving temporal coherence. We use two geometric

constraints: a “hedgehog” constraint, where labels originate from a common point and

move along a 3D pole stuck into the annotated object, and a plane constraint, where

annotations move in a plane that is either parallel to the viewing plane or user-defined in

world space.

While the “hedgehog” constraint restricts the movement of labels along one line, the

plane-based approach allows labels to move freely along the plane. To avoid constantly

changing annotations during camera movement, our view management approach optimizes

the layout for the current viewpoint of the user and then freezes the layout to avoid

changes in adjacent viewpoint. We use a similar approach to achieve temporal coherence

for compact visualizations. More specifically, we optimize the layout of annotations for

the viewpoint of the user and freeze the layout. Only after the viewpoint changes and

the movement stops, we update to the new optimal layout. Note that for the compact

annotations examples, we still use a 2D view management approach [56]. However, we

can easily exchange this approach with the 3D view management approaches presented in

this work.

Freezing the layout once it is optimized stabilizes the layout during camera motion.

However, when reaching the new viewpoint, the switch to the newly optimized layout can

completely rearrange the layout, thus causing again distracting changes. To reduce the

amount of changes, the layouts could be updated only partially. Hence, instead of allowing

the algorithm to rearrange all labels, only a subset of labels is rearranged. This subset can

consist, for instance, of those labels that violate certain layout criteria strongest, e.g., by

having the longest leader lines or causing the most leader line crossings. We already use a

similar method for switching between layouts of compact explosion diagrams. For compact



4.4. Conclusion and Future Work 131

explosion diagrams, we reduce the amount of changes between adjacent viewpoints by

enforcing that the new layout must be similar to the previous layout. This method can

be expanded and combined with the approach to freeze the layout between viewpoint

changes.

Until now, researchers have based the aesthetic criteria for label layouts mainly on

experience and observation of illustrated examples [57], but, to the best of our knowledge,

the impact of these criteria on the perception of the visualization has not yet been formally

evaluated. Based on the assumption that violating aesthetic criteria to a certain degree

may not have a negative impact on the perception of the visualization, we performed a

user study, in which we compared our plane-based hedgehog labeling approach to view

management systems that continuously update labels. In our study, our approach clearly

outperformed systems working with 2D representations, even though it froze the 3D layout

of annotations relative to the object, thereby violating the given layout constraints. Based

on this result, we are confident in our recommendation to use 3D layouts that do not have

to be continuously updated. Furthermore, labels should be treated as 3D objects and

part of the scene. Integrating 3D labels into the scene allows the AR system to naturally

apply the camera pose to the labels. It also has other advantages with respect to 3D

interaction methods. For instance, a method for manipulating a 3D object in AR can

be directly applied to manipulating a label. For instance, simple manipulations such as

picking and transformations (scale, translation, rotation) can be used without modifying

the used interface. In addition, transitional interfaces, which switch from an AR view to

a virtual view of the scene can treat annotations as scene objects and, therefore, do not

have to treat annotations different than any other object.

An additional advantage of a static 3D layout is that it can be calculated by optimizing

the overall layout for a single frame. After the initial computation, no additional compu-

tational resources are required, because the layout is not continuously updated. This is

beneficial for the battery life of mobile devices.

In the following, we discuss additional open issues regarding the 3D view management

as future work. Assuming that labels in different planes can be clearly distinguished using

parallax effects, we can further use plane-based label placement to reduce the amount of

label fighting by resolving occlusions between labels only if they are grouped into the same

plane. To reduce clutter from conflicting labels in the other planes, it may be sensible to

allow for transparent labels.

We can also improve the definition of the plane constraints. While the current imple-



132 Chapter 4. Temporally Coherent View Management

mentation of our plane-based approach requires the user to set the amount of planes at

run-time, we plan to develop more advanced plane fitting techniques that take into ac-

count the extents of the object and the current viewpoint of the user. Hence, an elongated

object is split by more planes than a shorter object.

To further enhance plane-based label layouts, we can use other planes than those which

are parallel to the current image plane. This is particularly useful, if there are dominant

surfaces of an object, such as a building facade. In such a case, we may want to use labels

that are not automatically rotated towards the viewer, but rather remain in the plane of

the main surface, and are also displaced in this plane to avoid occlusions.

For concave objects, our center-based hedgehog approach may generate label poles

which penetrate unrelated parts of the object between the anchor point and the label’s

annotation. To handle such situations, we can decompose the object into a set of convex

shapes, for which we apply our approach separately. However, this may cause heavy

fighting between labels. Such situations can also be handled by rendering labels after

scene objects with disabled depth test. In this case, a penetrating pole always appears in

front of the object.



Chapter 5

Extending the Ego-centric

Viewpoint

Contents

5.1 Object-centric Exploration Techniques . . . . . . . . . . . . . . . 134

5.2 Smart Transitions using Scene Semantics . . . . . . . . . . . . . 156

5.3 Multi-perspective Rendering . . . . . . . . . . . . . . . . . . . . 169

5.4 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . 180

Mobile devices such as smartphones allow users to access location-based information

anywhere and at anytime. For instance, tourists can query information about surrounding

points of interest in a foreign city, a task which can also be supported by mobile tourist

guides [117]. The information is commonly presented using a spatial representation, such

as 2D or 3D maps. 3D maps even allow exploring real world objects freely, since they are

not bound to the egocentric viewpoint of the user. However, mobile map solutions are not

optimally designed for urban exploration [9] and provide limited capabilities to access the

data and to relate it to the real world. For instance, users of 3D maps often try to align

the virtual viewpoint of the map with their egocentric viewpoint for easier orientation,

a strategy that is not well supported by the interface [102]. The only alignment feature

3D maps offer is to align the exocentric top-down view with the general viewing direction

of the user. Another issue of currently available 3D maps is that the camera view of the

object is often occluded by nearby structures, which is especially problematic in densely

built-up areas (Figure 5.1).

AR is a natural choice for exploring location-based information of real world objects,

133



134 Chapter 5. Extending the Ego-centric Viewpoint

Figure 5.1: A 3D map (here: Google Earth) allows users to explore surrounding real
world objects. However, the user first has to identify the corresponding virtual object in
the map and then relate it to the current position. Furthermore, in densely built-up areas,
neighboring buildings will cause occlusions of the virtual viewpoint during exploration.

because AR overlays information directly into the user’s surroundings. For instance, a

user can easily access additional information about a building in an urban environment by

pointing an AR-enabled mobile phone into its direction. However, in contrast to a map

interface, users are limited to the inherent egocentric reference frame of an AR interface,

which becomes an obstacle, once the user wants to explore objects that are out of reach.

The user would need to physically move to a new position, which might be too cumbersome

or even impossible.

To deal with these limitations, we introduce Object-Centric Exploration (OCE) tech-

niques for handheld AR, which use a virtual copy metaphor [105] to gain access to distant

viewpoints of a real world object in the user’s AR view (see Section 5.1). The OCE tech-

niques use a simple seamless transition that zooms the virtual copy for further exploration.

However, such a transition can also assume specific viewpoints that also match the current

task of the user. In Section 5.2, we present a system that automatically assumes target

viewpoints that better match the scene geometry.

Aside from transitional interfaces, we also explored the usage of multi-perspective

renderings to extend the ego-centric viewpoint of the user in Section 5.3.

5.1 Object-centric Exploration Techniques

We explore different designs of OCE interfaces for the exploration of buildings in an

urban setting. In contrast to 3D maps, OCE techniques allow users to focus on a single

object they are interested in. OCE techniques also do not suffer from occlusions from



5.1. Object-centric Exploration Techniques 135

(a) (b)

(c) (d)

Figure 5.2: (a) How can I explore the Iowa State Capitol without physically moving? We
present Augmented Reality interfaces using a virtual copy metaphor to access additional
views, e.g., (b) uses an in-place, (c) a separated 3D copy with visual links between virtual
and real world object. (d) We also present a spatially separated interface, which uses a
2D copy of the real world object. The available viewpoints are arranged as a circle around
the real world object. The current viewpoint is highlighted.

neighboring structures, because a virtual copy of only a single object is presented. To

present additional viewpoints of this real world object, our OCE interfaces separate the

virtual copy (focus) from its real world counterpart and from its surroundings provided

by the AR video (context). We consider spatial and temporal techniques for combining

focus and context [27]. While the former separate focus and context in space, the latter

do so over time, thus removing the context from the interface. Figure 5.2 shows spatial

OCE techniques that preserve the context by either overlaying the copy on the context



136 Chapter 5. Extending the Ego-centric Viewpoint

(Figure 5.2(b)) or separating the copy from the context (Figure 5.2(c)).

We perform a series of studies to evaluate our initial designs and the ability of the user

to relate the virtual information to the real world. We perform studies under controlled

conditions and collect real world experiences with our interfaces in a real world pilot

study. Based on the results from the real world pilot study, we evaluate the performance

of our designs and compare them to a more common 3D map interface. We summarize

our findings in design recommendations that should be considered when developing OCE

interfaces for potential application areas such as future generations of location-based AR

browsers, 3D tourist guides, or situated urban planning. Relevant real world objects could

be annotated with additional information that can easily be explored using OCE interfaces.

5.1.1 Design Space

Our goal is to create OCE techniques for mobile AR that enable users to remain at a

physical location and explore a real world object from arbitrary viewpoints taken on its

virtual copy. For instance, the 3D model of the building in Figure 5.2(b) is virtual copy

of the physical one.

The design aspects of OCE techniques derive from different steps involved in the ex-

ploration of real world objects through a virtual copy in AR. OCE techniques must enable

users to identify a selectable real world object and provide means to select and inter-

actively explore this object using appropriate input controls and feedback on a display

device. OCE techniques also require spatial cues to facilitate mental linking between the

virtual copy and the real world. Figure 5.3 outlines the aspects discussed in this section.

Figure 5.3: A hierarchical diagram of the discussed design space for Object-centric Explo-
ration techniques in AR.



5.1. Object-centric Exploration Techniques 137

Input Control. The input control is defined by the input type, the mapping of the

input data to programmatic functions, and the feedback to the user on how to perform

an action. The input type for mobile AR may be one or more of the following: single and

multi-touch, locomotion, sensors and speech input.

Display Device. The presentation medium impacts the overall presentation of OCE

interfaces. An interface designed for a handheld device, such as a mobile phone, might not

work for a HMD. For instance, when using video see-through HMDs, manipulations of the

video background also influence the real world view of the user. A user with a handheld

device still has an unmodified view on the world by looking past the device.

For the moment, we will only consider handheld devices as target medium, because

these devices are widely available and a major platform for AR applications. The design

of an OCE interface is mainly influenced by the available screen-space and the orientation

of the device (landscape, portrait).

Object Selection. Object selection connects the user’s intent with a specific virtual or

real entity for subsequent tasks. In AR, not all of the objects of a scene can be selected

and interacted with, unless a full, dense and semantically connected 3D reconstruction of

the scene is available. Because such a reconstruction is hardly ever available, users require

guidance to recognize interactive objects in the AR scene. Hence, this aspect requires

selection guidance to highlight [136] which objects are interactive.

Object Exploration. To categorize the design of the exploration technique, we iden-

tified four aspects that consider the relationship between the real-world object and its

virtual copy: the type of separation, the user’s perspective, the properties of the virtual

copy and the size of the object on the screen.

Spatial-Temporal Aspect. Additional viewpoints of an object can be spatially or tempo-

rally separated from the original AR viewpoint. Spatial techniques preserve the egocentric

viewpoint of the user in the video image, and show additional viewpoints of the object.

Temporal techniques also provide additional viewpoints, but do not preserve the original

viewpoint of the object.

User Perspective. In outdoor mobile AR, users explore the world from an egocentric

perspective. OCE techniques can provide the user with exocentric viewpoints of an object.

In indoor environments such as tabletop setups [16], the user already has an exocentric view

of the object. In this case, OCE techniques can complement an egocentric perspective.



138 Chapter 5. Extending the Ego-centric Viewpoint

Virtual Copy. The virtual copy of the real object depends on the available data. The

object can be represented using different media (3D model or 2D picture) and can be

placed either in a 2D image space (e.g., map) or within a 3D coordinate system.

Object Distance. The projected size of the real object depends on the screen size and

its position relative to the user. The object may either be too large (too close) or too

small (too distant) to effectively combine virtual and real views with a spatial technique.

In this case, a temporal technique can be employed, which replaces the real object with

one taken from a more appropriate viewpoint.

Spatial Cues. Spatially or temporally separating the virtual copy from the real world

object creates discontinuities between the virtual and the real world. Users have to be able

to link both worlds in order to transfer the spatial knowledge gained in one representation

to the other representation. Spatial cues facilitate this linking to overcome the following

discontinuities.

Spatial discontinuity. Moving the virtual copy out of its original position in the context

creates a spatial discontinuity.

Viewpoint discontinuity. Changing the viewpoint of the virtual copy causes a misalign-

ment of this viewpoint with respect to the real world viewpoint.

Context discontinuity. A context discontinuity occurs when the video image of the real

world is modified. In extreme cases, an interface zooms in on the object and removes its

context completely.

Visual disparity. The degree of visual disparity depends on the quality of the virtual

copy. There is no disparity, when the virtual copy perfectly matches the real object. Note

that not only the virtual copy can be adapted to become more similar to the real world,

but also the representation of the real world can be changed. In this case, the context

discontinuity may increase, but at the benefit of decreasing the object discontinuity. Hence,

spatial cues can resolve certain discontinuities, but aggravate others.

Spatial cues that address all of these discontinuities are transitions between real and

virtual spaces [16, 50]. Hence, we use transitions as a standard cue, when switching

between the copy and the real world. For instance, when switching to the copy, the

virtual copy is gradually faded in (addresses visual disparity) and seamlessly rotated to a

bird’s eye view (addresses viewpoint discontinuity). At the same time, the virtual copy

and the context are rearranged on the screen using an animated transition (addresses

spatial and context discontinuity).



5.1. Object-centric Exploration Techniques 139

5.1.2 Interface Design

In this work, we explore a limited subset of the design space. Our focus is the design of

spatial-temporal representations of the interface and evaluating these with respect to the

spatial awareness of the user. Therefore, we explore the aspects of object exploration and

spatial cues in detail.

In our designs, we only consider handheld devices as display device, because these de-

vices are widely available and a major platform for AR applications. We assume that the

mobile device has a large screen, to be able to experiment with screen-space demanding

designs. Our interfaces are designed for landscape mode, which is the default mode of cur-

rently available AR browsers. Furthermore, we only use a common single-touch interface

for input control, and we highlight selectable objects with a simple frame.

The user perspective is defined by our application case, where we focus on large-scale

outdoor exploration. Hence, in accordance with the design space, the user perspective

is always egocentric and extended by exocentric viewpoints. For the object distance, we

assume the ideal case where the real world object is presented at a sufficient scale so that

all of the features relevant to our studies are clearly visible. For the virtual copy, we

assume that we have access to a 3D model of the object. In the following, we refer to the

initial view containing only the real world object as AR mode, and to the mode containing

the copy of the object as VR mode.

Spatial separation techniques seem to be the most relevant choice for exploring large

objects in an outdoor setting, because they preserve the real world context. We expect

that spatial separation techniques create an artificial bridge for mapping content in the

virtual copy to the real world. To investigate this aspect, we developed a 3D interface and

a 2D interface with spatial separation between focus and context.

In the 3D separation interface (3DSEP) (Figure 5.5(b)), a 3D copy is presented,

which allows for the continuous exploration of different viewpoints of the object. The

user interacts directly with the 3D copy through a virtual orbit metaphor. When entering

the VR mode, the copy is viewed from a bird’s eye perspective. We integrated common

spatial cues into the interface, to allow users to mentally link the viewpoint of the copy

to the original viewpoint of the context. A grid shows the ground plane of the copy and a

camera icon, located in the coordinate frame of the copy, indicates the original egocentric

viewpoint relative to the object. A radar icon in the top right shows the same information

in a more abstract visualization and from a top-down view. The copy is in the center of

the radar, while a dot rotating around the center indicates the camera position relative to



140 Chapter 5. Extending the Ego-centric Viewpoint

the object.

The 2D separation interface (2DSEP) (Figure 5.5(a)) uses images as copy. These

images could be pictures taken from the real world object. To avoid visual disparity of the

focus between both interfaces, we render them from the same 3D model used in 3DSEP,

taken at equidistant positions (45◦) on a horizontal circle around the object, with the

camera pointing towards its center. The viewpoints are elevated to bird’s eye views. The

user can replace the zoomed image at the top of the interface by using an explicit one-

finger tap, or by swiping over the set of images. The ground plane is rotated upwards

around the x-axis, so that the images do not occlude each other or the object. In contrast

to 3DSEP, 2DSEP does not provide continuous viewpoint updates.

We included corresponding spatial cues from 3DSEP in 2DSEP. We did not include

the cues in the rendered images, but only applied them to the image circle, so that we

could investigate if the circle is sufficient for users to orient in the interface. We added a

grid to visualize the ground plane on which the images are placed and removed its center,

to avoid occlusions of the real object in the video image. Each image in the circle received

a camera icon representation. A radar-like cue is achieved by the relation of the currently

selected highlighted image to the image showing the frontal view.

Aside from these spatial cues, both interfaces provide a smooth transition between AR

mode and VR mode to connect these spaces [16]. When entering the VR mode, the video

image is scaled down and moved to the bottom of the screen, while the copy is moved

to the top of the screen. Spatial separation fully preserves the context at the cost of

introducing a spatial offset between focus and context. Spatial discontinuity is alleviated

by seamlessly animating the transition of focus and context. Visual disparity is addressed

by gradually fading the copy in and out.

To address both viewpoint and spatial discontinuity,, we added a switchable spatial

cue called visual links (as shown in Figure 5.2(c)) to 3DSEP, thus creating interface

3DSEP+L(inks). Links provide a visual connection between the copy and the real world

object. By tapping on a location on the 3D copy, a user can create a 2D line to the corre-

sponding location in the video image. The line style is adapted to communicate occlusion

with the focus object, and color coded to communicate the end points.

5.1.3 Evaluation: Abstract Scenarios

We explored the usage and usability of OCE techniques in a series of user studies. We

focused on how users interact with our techniques independently of the semantics and



5.1. Object-centric Exploration Techniques 141

salient content of the real world. Therefore, we evaluated the interfaces using abstract

scenes with basic geometric shapes.

(a) (b)

Figure 5.4: Indoor apparatus. (a) The apparatus used during the laboratory studies. We
placed a tablet PC in front of a back projection wall. Users were seated in front of the
tablet PC looking at the wall. (b) The view of an abstract scene from the participant’s
position showing the peripheral view in the background an the used tablet PC in the
foreground. The tablet PC shows the VR mode of the 3DSEP interface.

5.1.3.1 Evaluation Testbed

To avoid confounding factors from the real world, we used a simulation testbed for AR.

A testbed allows us to present artificial environments and structures with which the par-

ticipants are not familiar. These scenes can represent real world environments, or can be

purely abstract. Testbeds for simulating AR scenarios have already been used to control

the registration error [80] or variable lighting conditions [81]. Testbeds were also used to

overcome technical limitations of currently available hardware [11].

In our scenarios, a user has already found a real world object of interest and is looking

towards it. We assume that the user remains stationary, while exploring the object with

our interfaces, and thus does not require an immersive 360◦ view of the environment.

Therefore, we simulate the peripheral view of the world with a back-projection wall (4×2m,

4000×2000 Pixel) used in daylight conditions (Figure 5.4(a)).

We seated participants in front of the wall and mounted the AR device on a tripod

in front of them, to simulate holding a handheld device, while at the same time removing

the associated physical fatigue. The AR device, a tablet PC (Motion Computing J3500,

12.1′′), showed a static snapshot of the environment (1066×800 Pixels) that simulated the



142 Chapter 5. Extending the Ego-centric Viewpoint

view through a video camera. Figure 5.4(b) shows the view of the participant when seated

in front of the wall.

5.1.3.2 Experimental Design

The following studies are within-subject and share the same experimental design and

apparatus (Section 5.1.3.1). They differ only in their interface conditions.

Scenario. We rendered a virtual scene consisting of only basic geometric shapes (cone,

elliptic cylinder, sphere). The scale and position of these were chosen to resemble real

buildings (e.g., elliptic cylinder, 35m in height, half-axes length x=17m and z=22m). The

peripheral view was rendered using a virtual camera (60◦ FOV), placed 120m from the

scene at eye level of the participants. A human scale icon was used as a reference. The

AR view was taken with a camera (60◦ FOV) mounted on the tablet PC.

Tasks. The tasks are representative of interaction with real world 3D objects: (T1) a

counting task, where users navigate the copy to find particular figures and count them;

(T2) a mapping task, where users search the copy for a single object and point to its

location in the peripheral view. For both tasks, the scene included distractors (blue

cubes) and targets (red spheres), which were placed on the cylinder in a regular pattern

(10 angles, 3 elevations). For T1, five to seven spheres were randomly distributed around

the object. For T2, only one sphere was placed at a random location on the grid.

Procedure. For each task and interface, the participants had one practice trial without

time constraints. T1 trials were completed by entering the number of counted spheres

on an auxiliary keypad, T2 trials by point-and-click to the location of the sphere in the

peripheral view with a laser pointer. Participants completed questionnaires regarding

different aspects of the interface such as ease of use or intuitiveness between each interface

and task, and after the experiment. We recorded task completion time for both T1 and

T2, counting error for T1, and a pointing error for T2. The latter was estimated using

a vision-based method, which provided the Euclidian distance for images with resolution

640× 480.

5.1.3.3 First Study: Varying Copy and Cues

This explorative study compared our first interface designs (3DSEP, 2DSEP, 3DSEP+L)

to evaluate 2D and 3D copy representations and the spatial cues. Figure 5.5(a) shows

2DSEP and (b) 3DSEP as used in this study. 3DSEP+L is the same as 3DSEP with the

option to create visual links.



5.1. Object-centric Exploration Techniques 143

(a) (b) (c)

Figure 5.5: Interface designs for studies in abstract conditions. Spatially separated inter-
faces using (a) images (2DSEP) and (b) a 3D copy (3DSEP), as used in the first study.
(c) The 3D in-place interface (3DINP+L), as used in the second study.

Table 5.1: Mean completion times in seconds and point errors in pixels, both with SD, for
the first and second study.

T1 T2
Interfaces Time Time Error

Study 1
2DSEP 22.8 (7.3) 18.3 (7.3) 41.5 (28.0)
3DSEP 15.1 (4.5) 16.7 (7.6) 48.1 (26.3)

3DSEP+L 16.9 (5.6) 20.5 (9.6) 39.4 (21.2)

Study2
3DSEP+L 19.7 (8.1) 25.5 (12.9) 22.5 (9.9)
3DINP+L 20.8 (7.7) 25.7 (12.9) 23.4 (7.8)

Participants. A total of 24 people (12m/12f), 16−35 years old (mean=25.9, sd=4.2),

performed five repetitions (720 trials) for each task and interface. The presentation order

of interfaces and tasks was counterbalanced.

Results. For each interface×task condition and participant, we calculated the mean

completion time and error from the five repetitions (Table 5.1). We performed non-

parametric tests, because our sample violated normality. A significant effect of interface

on time was only observed for T1 (Friedman, X2(2)=22.3, p<0.001). A post-hoc Wilcoxon

signed-rank test with Bonferroni corrected α=0.0176 showed that 3DSEP (p<0.001) and

3DSEP+L (p<0.001) were significantly faster than 2DSEP. Otherwise, the performance

data revealed no significant effects.

Discussion. Both 3D interfaces outperformed the 2D interface in the counting task

T1. However, the questionnaire data revealed only a significant preference of 3DSEP over

2DSEP for T1 (Table 5.2). This is reasonable, given that participants did not require

the visual links of 3DSEP+L to solve this task. For the mapping task T2, both 3D

interfaces were preferred over the 2D interface. The interview revealed that participants

had difficulties with orientation using the discrete image switches in 2DSEP. Participants



144 Chapter 5. Extending the Ego-centric Viewpoint

Table 5.2: Significant effects regarding interface preference (5-point Likert scale). Study 1
was tested with Friedman (not reported) and Wilcoxon signed-rank tests with Bonferroni
corrected α=0.0167; Study 2 with Wilcoxon signed-rank tests with α=0.05.

Study 1 Study 2
2DSEP& 2DSEP& 3DSEP& 3DINP+L&

Task 3DSEP 3DSEP+L 3DSEP+L 3DSEP+L
T1 p=0.001 p=0.067 p=0.035 p=0.713
T2 p=0.006 p=0.008 p=0.512 p=0.029

found this especially challenging in T1, where they had problems keeping track of multiple

neighboring spheres.

In general, visual links were well received and found to be intuitive. Nevertheless,

only 58% of the participants used the links, because, according to their feedback, the

task could easily be solved without them. We did not find any significant difference

in point error between 3DSEP and 3DSEP+L. However, when dividing the trials of

3DSEP+L and 3DSEP into those with (n=68,mean=31.2, sd=14.4) and those without

(n=172,mean=48.8, sd=40.58) visual link usage, the results indicate that participants

made less errors, when they used links.

The interviews showed that the camera icon was a strong cue for communicating

the starting point of rotation. Based on the interviews, we believe that participants

were unsure when rating the radar cue. The arrangement of images in 2DSEP was well

perceived. Participants also stated that it provided a good overview of the object in T2,

because the single red sphere was very salient.

5.1.3.4 Second Study: Varying Spatial Separation

Since 3DSEP and 3DSEP+L were the preferred interfaces, and both performed better

during the exploration task (T1), we focused on investigating 3D interfaces further. We

kept 3DSEP+L as representative 3D mode, because the visual links showed value as spatial

cue in the mapping task (T2). Based on our observations, we introduced a reset button,

which automatically realigns copy and context viewpoint. We also removed the radar cue

from the interface. Aside from these changes, 3DSEP+L corresponded to the interface

used in the first study (Figure 5.5(b)).

In this study, we explored two variations of spatial separation. We created an in-place

interface (3DINP+L) that is similar to 3DSEP+L, but which has the copy overlaying the

real-world object (Figure 5.5(c)). We included the visual links in 3DINP+L, even though

their end points are occluded by the 3D copy. Our assumption was that participants

would need to switch between AR and VR modes to remove the occlusion and to mentally



5.1. Object-centric Exploration Techniques 145

connect focus and context.

Participants. Twelve participants (6m/6f), aged between 19 and 30

(mean=24, 7, sd=3.3), performed five repetitions (240 trials) of each task and interface.

The presentation order of interfaces and tasks was counterbalanced.

Results. In the analysis, we used the same methods and statistical tests as in the

previous study. Time and error measurements are summarized in Table 5.1. Statistical

analysis did not reveal any significant effects.

Discussion. For T2, participants significantly preferred 3DINP+L over 3DSEP+L

(Table 5.2). In the interview, participants stated that they preferred 3DINP+L because

it was a more natural and intuitive approach to not separate focus from context. They

also mentioned the increased size of the object in 3DINP+L. The lack of significance of

3DINP+L for T1 may be explained by the comments of participants, who stated that

they only focused on the 3D copy and did not consider the video background for this task.

Therefore, the placement of the virtual copy was irrelevant.

Interestingly, the visual links still served as orientation cue in 3DINP+L, even though

they penetrated the copy and the endpoints were occluded. Participants noted that visual

links showed the misalignment between the copy and the context. As before, trials in

which links were used showed smaller point errors (n=97,mean=19.6, sd=10.6) than trials

without visual links (n=23,mean=36.9, sd=26.4), which underlines their value as spatial

cue.

Figure 5.6: Pilot Study. A spatial technique (3DSEP+L) applied in a real urban environ-
ment. The small inset shows a participant using our system.



146 Chapter 5. Extending the Ego-centric Viewpoint

5.1.4 Evaluation: Real-World Scenario

In the previous studies, we focused on general properties of our interfaces and avoided

confounding factors from real world scenes by using only abstract scenarios. In the fol-

lowing study, we introduce the real world into our interface design. We first performed a

pilot study in a real world setting to collect qualitative feedback and identify issues with

the interfaces. Afterwards, we performed a more thorough and controlled study in our

laboratory testbed.

5.1.4.1 Pilot study: Real-world Setting

We conducted a study in a popular urban area of our city center with the 3DINP+L and

3DSEP+L interfaces. Figure 5.6 shows the 3DSEP+L interface with one of the target

buildings.

Task and Methodology. Participants had to find and point to the real world location

of a sphere located on the copy of the focus object. Participants were bound to a fixed

location, but could rotate with the mobile device (InertiaCube3 sensor). The task was

repeated with three visible distinctive cultural buildings located in varying distance around

the participant: an art gallery (40m), a building floating on the river (200m), and a tower

(370m). Pointing was estimated roughly by visual and verbal assessment. After the

experiment, participants completed a questionnaire.

Participants. Ten people (7m/3f) aged between 16 and 32 (mean=24.2, sd=4.3) partic-

ipated. They were recruited among local pedestrians and familiar with the surroundings.

Discussion. All participants were able to solve the task easily and, generally,

gave positive feedback. All of them could imagine to use such an interface as a

tourist, for exploring unknown landmarks and sights (5-point Likert, 1=strongly agree:

mean=1.3, sd=0.48). Visual links were regarded useful as orientation cue. In contrast

to the previous study, we did not find any significant difference in preference between

3DINP+L (mean=4.0, sd=0.82) and 3DSEP+L (mean=3.8, sd=1.1). Participants who

preferred 3DINP+L again stated that it was more intuitive and natural; the ones who

preferred 3DSEP+L stated that it provided a better overview and that the copy was

clearly visible due to the spatial separation from the video context. Hence, a main issue

seems to be the visual interference of the copy with the real world.



5.1. Object-centric Exploration Techniques 147

(a) (b)

(c) (d)

Figure 5.7: Interface designs for study in real scenarios. (a) Temporal (3DTMP), (b) in-
place (3DINP) and (c) separation interface (3DSEP) applied to the most complex scene.
Note the lack of contrast between virtual copy and context in (b) and the reduced size of
the virtual copy in (c). (d) A map interface (MAP) applied to the most complex scene.
The map is centered on the user’s position and oriented in viewing direction. The circle
in the center indicates the interaction area for the rotation, the rectangle on the right the
one for the zoom. The translation interaction area is located outside of the other areas.

5.1.4.2 Experimental Design

Although users preferred 3DINP+L in the laboratory setup, we could not reproduce this

when deploying the interfaces to a real world setting. According to participants’ feedback,

the main issue was the visual interference between video background and the 3D copy in

3DINP+L. Therefore, we decided to investigate the influence of different real world scenes

on our interface design. We used the apparatus described in section 5.1.3.1.

Condition: Interfaces (4). The studied OCE interfaces only differ in terms of the



148 Chapter 5. Extending the Ego-centric Viewpoint

spatial-temporal aspect. We reused the spatially separated 3D interface (3DSEP) without

visual links (Figure 5.7(c)) and the in-place interface, from which we removed the links

(3DINP) (Figure 5.7(b)). We also developed a temporal interface (3DTMP) which, similar

to 3DINP, shows the focus object registered to the real object, but does not preserve the

video when switching to the VR mode (Figure 5.7(a)). Hence, this interface not only

exhibits high visual contrast to the background similar to 3DSEP, it also exhibits the

natural behavior of 3DINP and its increased size of the 3D object.

As a baseline condition for our interfaces, we included a 3D map interface (MAP)

(Figure 5.7(d)). The map shows buildings and terrain without additional contextual in-

formation from the real world, such as trees and cars. The view is centered on the location

of the user, which is indicated with a blue cylinder, and oriented towards the real focus

object. The user can translate, zoom and rotate the view on the map. The rotation and

zooming center is defined by the screen center and indicated by a grey cylinder.

We did not include the visual links in this study, because they may be a confounding

factor due to the clutter added to the presented real world scenes. Furthermore, in MAP

and 3DTMP, the end point of visual links do not connect to a visible real world context.

Condition: Scene Complexity (3). We prepared three artificial scenes with a 3D city

modeling software (Esri CityEngine). Unlike when using realistic pictures created with

image-based modeling techniques relying on photographs, this approach allowed us to have

control over the presented scenes. It also removed the effect of scene knowledge from the

study, because participants were not familiar with the buildings or their locations.

We rendered two views of each scene using a third party software (Lightwave’12): one

simulated the periphery, one the AR view. The periphery was rendered using a camera

(100◦ FOV) in a resolution that matched the projection wall. The AR view was rendered

with a camera (60◦ FOV) in a resolution that matched the one of the display device. All

views were taken at the eye level of the participant.

The generated scenes exposed different degrees of real world complexity. In contrast

to Lee et al. [81], who define complexity with different levels of visual realism, we define it

as the number of unique objects classes, the geometric complexity of the focus buildings

and the density of the neighboring buildings. Figure 5.8 shows the peripheral views, the

outtake for the AR view (red rectangle), and the buildings with an outlined silhouette.

Task. We included the context in the task and asked the participants to find an object

of a certain color and shape, which was close to an object visible in the context. We used

a total of nine objects: three cubes, three cones, three spheres. Each of the objects of



5.1. Object-centric Exploration Techniques 149

(a)

(b)

(c)

Figure 5.8: Scenes with (a) low, (b) medium and (c) high complexity. The estimation
of complexity considers the number of unique object classes, the density of neighboring
buildings and the geometric complexity of the focus buildings. To the left, the silhouette
of the buildings is outlined. The center rectangle is the content visible in the AR view.
(Best viewed digitally and zoomed.)



150 Chapter 5. Extending the Ego-centric Viewpoint

Table 5.3: Excerpt of questionnaire. Q1 and Q2 use a 5-point Likert scale (1=strongly
agree), Q3 a grade system (1 to 5; 1 = worst).

Q1 It was easy to solve the task using the interface.
Q2 The interface was intuitive to use.
Q3 Rate how you liked the interface.

a shape were colored in either red, green or blue. We arranged the shapes at a medium

height on the copy of the focus. To force participants to navigate the copy, we placed

the objects only sideways and in the rear (Figure 5.7). The colors were randomized, and

the shapes were placed pseudo-randomly such that the answer to the posed question had

a clear solution. The position of the object in question was consistent among the trials

between participants.

The question was: “Which color does the shape closest to the object have?” Shape

refers to one of the three shape types, object to an object visible in the periphery as well

as the AR view. To avoid that participants learn the location of objects, we varied their

placement in the scene between each interface.

Procedure. The interface condition was counter-balanced, scenes in each interface

condition were presented in random order. Before using an interface, participants solved

a trial task without time constraint in a trial scene. Participants finished all scenes with

an interface, before progressing to the next. The question was shown at the bottom of the

screen when starting the task. It disappeared, when interaction started, and reappeared,

when the corresponding button was pressed. The task was finished, when participants

selected a color on screen. We recorded task completion time and color error.

When using MAP, the participants had to take the mobile device in their hands to

simulate map usage behavior. In the other interface conditions, the device was mounted in

front of the participants to simulate an AR view. Participants completed questionnaires

after each interface (4) and after finishing the study (1). An excerpt of questions is shown

in Table 5.3.

Hypotheses. H1. Our hypothesis was that the interfaces outperform each other in

terms of task completion time as follows: MAP < 3DTMP < 3DINP < 3DSEP. We

considered that MAP is not designed for object-centered exploration and requires the

most interaction effort. Furthermore, in MAP, the investigated buildings are occluded

by neighboring buildings. 3DINP and 3DSEP outperform 3DTMP, because, in 3DTMP,

participants cannot use the video context in the VR mode and must look into the periphery.

3DSEP outperforms 3DINP, because the video is not occluded by the copy. H2. Our



5.1. Object-centric Exploration Techniques 151

Table 5.4: Third Study. Mean completion times and SD in seconds.
Low Medium High

Mean (SD) 15.36 (4.43) 18.51 (4.67) 22.57 (5.9)
MAP 30.90 (9.45) 20.69 (7.77) 31.56 (13.85) 38.34 (12.12)

3DTMP 14.92 (3.68) 13.66 (4.51) 14.16 (2.80) 16.43 (4.51)
3DINP 15.67 (6.75) 13.74 (6.95) 14.32 (5.32) 18.48 (9.20)
3DSEP 14.87 (4.56) 13.35 (4.04) 14.05 (4.32) 17.04 (6.36)

Table 5.5: Third Study. Significant effects between interfaces per scene, tested with
Friedman (α = 0.05) and Wilcoxon signed-rank tests with Bonferroni corrected α=0.0083.

Low Med. High
X2(3)=17.1
p < 0.001

X2(3)=26.8
p < 0.001

X2(3)=29.7
p < 0.001

MAP&3DTMP p=0.006 p<0.001 p<0.001

MAP&3DINP p=0.001 p=0.001 p<0.001

MAP&3DSEP p=0.002 p<0.001 p<0.001

3DTMP&3DINP p = 0.836 p = 0.918 p = 0.535
3DTMP&3DSEP p = 0.796 p = 1.0 p = 0.836
3DINP&3DSEP p = 0.959 p = 0.642 p = 0.569

second hypothesis was that the scene complexity has a negative influence on the task

completion time. We believe that more complex scenes lead to higher task completion

times.

Participants. The experiment followed a within-participants design, with five repeti-

tions for each interface and task (960 trials). A total of 16 people (14m/2f), 24-46 years

old (mean=30.06, sd=5.62), took part in the study. The participants were recruited from

university staff and on the campus.

(a) (b)

Figure 5.9: Third Study. Task completion time (a) per interface condition and (b) per
interface and scene.



152 Chapter 5. Extending the Ego-centric Viewpoint

Table 5.6: Third Study. Significant effects between scenes (Low=L, Med.=M, High=H)
per interface tested with Friedman (α = 0.05) and Wilcoxon signed-rank tests with Bon-
ferroni corrected α=0.0167.

L&M L&H. M&H
MAP X2(2)=22.875,p < 0.001 p=0.001 p=0.001 p=0.026

3DTMP X2(2)=14,p <0.05 p=0.148 p=0.001 p=0.003

3DINP X2(2)=16.625,p < 0.001 p=0.163 p=0.001 p=0.005

3DSEP X2(2)=7.875,p < 0.05 p=0.5 p=0.003 p=0.007

5.1.4.3 Results

For each interface × scene complexity condition and participant, we calculated the mean

time and error from the five repetitions. Based on this, we calculated the mean of the scene

complexity and interface conditions for each participant. The values are summarized in

Table 5.4 and Figure 5.9. We performed non-parametric tests, because our sample violated

normality. We do not report on the error, because it was practically non-existent.

Interface. A significant effect of interface on time was observed (Friedman,

X2(3)=18.075, p<0.001). A Post-hoc Wilcoxon signed-rank test with Bonferroni

corrected α=0.0083 showed that all AR interfaces were significantly faster than MAP

(p<0.001). This significant effect between MAP and AR interfaces was present in each

scene complexity condition. For better readability, these test results are presented in

Table 5.5.

Based on these results, we partially accept H1. The AR interfaces outperform MAP

in terms of task completion times. The performance of the task completion time is also

consistent between all scenes and, thus, applies to different scene complexities.

Scene. A Friedman test between scene complexities revealed a significant effect on com-

pletion time (X2(2)=22.875, p<0.001). A post-hoc Wilcoxon signed-rank test with Bonfer-

roni corrected α=0.0167 showed significant differences between scene A and B (p=0.003),

A and C (p=0.001) and B and C (p=0.002). For better readability, the significant effects

between the scenes of each interface are summarized in Table 5.6.

Based on these results, we accept H2. Scene complexity had an overall negative impact

on the task completion time of all interfaces.

Questionnaires. The questionnaire data is summarized in Table 5.7, significant effects,

in Table 5.8. Participants were asked to rank the scenes according to their perceived

complexity, and rated the scenes as follows: high as high (100%), medium as medium

(94%), low as low (94%). One participant switched medium and low.



5.1. Object-centric Exploration Techniques 153

Table 5.7: Questionnaire data with mean and SD (rounded) for the study using the real
world content (3).

Study 3
T3

MAP 3DTMP 3DINP 3DSEP
Q1 3.0 (1.2) 1.4 (0.5) 1.6 (0.6) 1.3 (0.5)
Q2 2.9 (0.9) 1.5 (0.8) 1.3 (0.5) 1.3 (0.5)
Q3 2.1 (1.0) 3.9 (1.0) 4.4 (0.6) 3.8 (0.9)

Table 5.8: Third Study. Significant effects in questionnaire data. The data was tested
with Friedman (not reported) and Wilcoxon signed-rank tests with Bonferroni corrected
α = 0.0083.

Q1 Q2 Q3
MAP&3DTMP p=0.001 p=0.001 p=0.002

MAP&3DINP p=0.003 p=0.001 p=0.001

MAP&3DSEP p=0.001 p<0.001 p=0.001

3DTMP&3DINP p=0.317 p=0.527 p=0.070
3DTMP&3DSEP p=0.414 p=0.206 p=0.869
3DINP&3DSEP p=0.096 p=0.655 p=0.078

5.1.4.4 Discussion

Participants significantly preferred the AR interfaces over MAP (Q3), and all AR inter-

faces performed better than a traditional 3D map interface. Even 3DTMP that did not

preserve the video context in the VR mode performed better, which indicates that the

transition between AR and VR and the simple camera cue are sufficiently strong cues

for connecting real and virtual world. A major limiting factor of MAP was occlusions

from neighboring buildings in scenes of higher complexity. This was also supported by

corresponding statements in the interview. Generally, the task was significantly easier to

solve with the AR interfaces (Q1). Another factor which might have negatively influenced

MAP performance is that the objects referred to in the task were only visible in the pe-

riphery and not in the map itself. For this reason, in MAP, participants were forced to

redirect their view between the mobile device and the periphery, while in the AR condi-

tions the relevant objects were presented in the context displayed on the mobile device

either sequentially (3DTMP) or in parallel (3DINP, 3DSEP).

Contrary to what we expected, we did not find any differences between the AR inter-

faces. Participants could quickly find the queried object in the context at the beginning

of the task. In the VR mode, participants could always look into the periphery by glanc-

ing past the mobile device mounted in front of them. This may have been sufficient to

also achieve good performance in 3DTMP, where no context was available after switching

to the VR mode. When using an HMD without the option of looking at the periphery



154 Chapter 5. Extending the Ego-centric Viewpoint

directly after switching to the VR mode, 3DTMP may perform differently.

The participants’ comments regarding the interfaces were in line with those of previous

studies. Participants noted the good visibility of the copy in 3DTMP and 3DSEP and the

intuitive arrangement of focus and context in 3DINP.

Q2 revealed that the AR interfaces were significantly more intuitive than MAP. One

reason for this rating might be that the interface was not well suited to the task of object-

centric exploration. Another reason may be that MAP used a single touch interface

instead of a more common multi-touch interface. A multi-touch interface might improve

the intuitiveness and even the performance of MAP, but will still exhibit problems with

occluding structures. Hence, we are confident that our results also hold up against MAP

interfaces available on current mobile devices.

The performance and questionnaire data confirmed our estimation of the scene com-

plexity. Performance generally degraded with increasing scene complexity, and the ranking

of scene complexity by the participant was in line with our estimation. The impact on per-

formance can be attributed to different factors in the AR and MAP conditions. In MAP,

our observations and the interviews revealed that the density of neighboring buildings had

a major impact on performance. In the AR conditions, the decrease in performance can

mainly be attributed to the geometric complexity of the focus object. In the AR condi-

tions, there was only a significant effect between the scene with highest complexity and

all other scenes (Table 5.6). In contrast to the buildings in the other scenes, the building

in the most complex scene exhibited concavities, which occluded the queried shapes and

thus required more navigational effort.

The map interface can be classified within the frame of our design space. It is a tempo-

ral interface, which does not provide any strong cues to resolve the viewpoint discontinuity

between the egocentric viewpoint of the user and the exocentric map view. There is no

seamless transition between these views, but, similar to the camera icon in the AR in-

terfaces, the position indicator of the map interface represents the current viewpoint of

the user. The map interface exhibits a large context discontinuity, because the real world

context is replaced with only a virtual representation showing buildings and terrain. In

comparison, the context in the three AR interfaces shows only an egocentric 2D view, but

is richer in information, because it contains details such as cars or street signs.



5.1. Object-centric Exploration Techniques 155

5.1.5 Design Recommendations

In the following, we put forward design recommendations for OCE techniques based on

the findings of the previous studies. We also outline potential future research directions.

The recommendations are structured based on the aspects outlined in the design space

presented in section 5.1.1.

Spatial-Temporal Aspect. We did not find performance differences between the in-place

and the spatially separated interface. However, under controlled laboratory conditions,

participants significantly preferred the in-place interface (3DINP+L), because the arrange-

ment of focus and context was more natural. Occlusion of the context by the copy did

not seem to be an issue. In the real world setting, we did not find a significant preference,

because participants also preferred 3DSEP+L, because of the higher contrast between the

copy and the white background. Therefore, an in-place interface may have to adapt the

context to always achieve a good contrast to the overlaid focus object (e.g., desaturation

of video background).

Generally, participants used the interfaces to get a quick overview of the focus object.

Using 3D interfaces, participants switched to a top-down view to quickly look at the

different sides of the object. In 2DSEP, participants used the small images as multi-

perspective visualization to quickly identify the view containing the queried red sphere

in T2. Therefore, OCE techniques should offer modes to explicitly get an overview of

an object. When using images as overview, the relevant items on the object should be

emphasized in an authoring step beforehand (e.g., by labels), due to the small size of the

images, especially on mobile phones.

Input Control. An overview can easily provide shortcut navigation to quickly access

viewpoints. In 2DSEP, participants used the small images to quickly navigate between

viewpoints in non-sequential order by accessing 90◦ and 180◦ offset views. This is also a

main motivation for similar interfaces, such as SnapAR [124] or the one of Veas et al. [138].

Based on our experience with MAP, a simplified camera navigation model with few

degrees of freedom (e.g., orbit metaphor) was sufficient for the investigated structures.

However, future designs should also consider zooming and the exploration of more complex

structures, which require more sophisticated navigation metaphors. For instance, the

HoverCam [76] allows to explore complex objects with few degrees of freedom.

Virtual Copy. Our findings are in line with Bowman et al. [19], who found out that in-

stant teleportation causes disorientation. In our studies, continuous 3D viewpoint changes

outperformed discrete 2D switches. Therefore, a 3D interface is the most sensible choice



156 Chapter 5. Extending the Ego-centric Viewpoint

for presenting viewpoint changes to the user.

Spatial Cues. When designing our OCE interfaces, we focused on the presentation of a

single point of interest and provided only limited contextual information through the video

background (3DSEP, 3DINP). In one design, we even removed the context completely

and presented only the virtual copy and the camera icon (3DTMP). Participants could

easily solve the given tasks with 3DTMP, the most basic OCE interface design. All

OCE interfaces also outperformed the map interface, which also showed structures of

surrounding buildings and thus provided more contextual information about surrounding

structures. Hence, the transition between AR and VR mode and the camera icon seem to

be sufficiently strong cues to connect separated views and address spatial, viewpoint and

context discontinuity. The radar icon was not considered helpful. This indicates that cues

should be connected directly to the spatial reference frame of the copy.

Based on the collected data and participants’ feedback, we can say that visual links

are a valuable spatial cue. We designed visual links with spatial separation between focus

and context in mind (3DSEP+L). However, participants considered spatial separation

as inferior to a more natural in-place interface, due to the smaller size of the zoomed

focus object. Hence, the links could be redesigned to better support in-place interfaces.

We observed that participants mainly used links during the mapping task (T2). An

intermediate mode could be introduced that switches from in-place to a spatially separated

presentation, when users want to map information back to the real world.

5.2 Smart Transitions using Scene Semantics

The OCE techniques showed that the transition between virtual and real content seem

to be sufficient so that users can stay oriented when switching between modes. However,

the transitions are rather straightforward and do not take into account the actual goal of

the user. A user that annotates an object might have another viewpoint in mind than a

user that just explores the object. Furthermore, often users may not want to completely

switch to the virtual viewpoint, but only preview certain aspects. Therefore, we refine the

transitional aspect of the interfaces to be more reactive to the context of the application.

Another aspect of the interfaces presented in this section is that they are better suited

to handle unknown environments. Augmented Reality (AR) applications traditionally

rely on predefined, rigidly modeled content that only applies to those conditions of the

real world that were present when the application was developed. Hence, often an AR

application can be deployed only in a single physical location, which limits its flexibility.



5.2. Smart Transitions using Scene Semantics 157

This problem is aggravated when changes in the environment cause misalignments between

the previously recorded data and the real world. Such a situation can impair the correct

functioning of the application.

Fortunately, there has been tremendous progress in the area of real-time Simulta-

neous Localization and Mapping (SLAM) [99]. SLAM enables users to deploy AR in

unprepared and unknown environments and allows them to capture the geometry and

the visual appearance of the environment. Furthermore, changes to the real world scene

can be captured, and AR applications can react to these changes. This allows users to

engage into AR applications anywhere and at anytime. However, real world scenes are not

modeled beforehand anymore, and users need to interact with and manipulate unprepared

environments that are unknown to the application.

We combine rapid scene acquisition and extraction of basic semantic information from

the captured scene with new transitional interface techniques that allow users to navi-

gate and manipulate unknown real world environments. Our techniques provide natural

transitions between AR and VR viewpoints and strategically place the virtual camera in

locations that are better suited for the current task of the user. For this purpose, we

capture a real world scene using KinectFusion [65] and analyze it to extract semantic

information to determine the virtual camera viewpoint (Figure 5.10). Note that the pre-

sented techniques can be used independently of the real-time capture system and can be

extended by more sophisticated semantic information.

Figure 5.10: After placing physical objects on a table, our system offers the possibility
to structurally navigate an unprepared scene with a set of new transitional navigation
techniques in AR (Left) and VR (Right) modes. The techniques seamlessly switch from
AR to VR modes.



158 Chapter 5. Extending the Ego-centric Viewpoint

5.2.1 Interface Design

We present four navigation techniques that can be used for dynamic scenes. Each technique

allows a seamless transition between the AR view and VR view of the captured scene.

The design of the presented transitional interface corresponds to a temporal interface as

evaluated before (3DTMP) (see Section 5.1.4.2). Consequently, the interfaces transition

from an AR view to a VR view that shows only the copy of the real world.

We classify the presented transition techniques into two categories: context-aware

transitions that use the knowledge gathered from the scene analysis and intermediate

transitions that provide VR views but are still connected to the AR view.

Figure 5.11: Spatial Cues. We provide spatial cues to facilitate orienting in the VR view.
(a) A camera icon shows the pose of the AR view, which is still tracked when the user
switches to the VR view. (b) The viewport of the AR view is also projected into the scene.
(c) The user can optionally activate a small window showing the current AR view.

The user can switch between AR and VR views at any time using one of the presented

techniques. To quickly move from VR back to AR, we provide a home button located

in the bottom left of the view. We provide spatial cues in the VR view to communicate

the current position of the tracked AR camera and, thus, the position of the user relative

to the virtual model. We visualize the tracked camera position in VR by rendering a

camera frustum (Figure 5.11(a)). We also visualize the viewing direction of the tracked

camera by projecting the borders of its viewport onto the scene geometry (Figure 5.11(b)).

Furthermore, we allow the user to open an AR window inset in the VR view, which shows

the AR view of the scene (Figure 5.11(c)). This also allows a user to see changes that

were performed in the VR view in the current AR view without switching back to AR.

To demonstrate our techniques, we use the scene shown in Figure 5.13(a) and render the



5.2. Smart Transitions using Scene Semantics 159

virtual scene using Image-based Rendering (IBR). Semantic input is provided by classifying

the scene into ground, object and top.

5.2.2 System Overview

Our system consists of four components: capturing a real world scene, analysis of the

scene, retrieving knowledge about the user’s task and camera navigation that fuses these

components to create viewpoint transitions. Figure 5.12 provides a schematic overview of

the components and their relation to the traditional AR pipeline.

Figure 5.12: Overview. In a traditional AR pipeline (dashed line) the tracking system
controls the viewpoint of the rendering. We expand this pipeline by a scene navigation
component, which allows to switch from AR to VR views and chooses viewpoints based on
scene and task knowledge. We gather scene knowledge from analyzing a scene captured
at run-time, e.g., by using a SLAM system.

In a traditional AR pipeline, the tracking component controls the viewpoint of the

rendering. We expand this pipeline with our scene navigation component, which seam-

lessly switches between live tracking and virtual camera viewpoints. This component also

selects camera manipulators to allow changes of the virtual viewpoints. The navigation

component strategically selects viewpoint and manipulator based on the knowledge about

the user’s task and knowledge about the scene. In our system, we gather scene knowledge

automatically by analyzing a virtual representation of the scene, which we capture and

reconstruct at run-time. The update frequency of the capturing process can be adjusted

to the reconstruction algorithm and its computational demands. The navigation runs in

real-time and operates independently of the capturing.

In the following, we present the details of three components: scene capture, scene

analysis and scene navigation. The task knowledge component depends on the application

scenario (authoring, games, etc.). We do not discuss this component in detail.



160 Chapter 5. Extending the Ego-centric Viewpoint

5.2.3 Capturing Scene Semantics

To enable modifications of the scene, we need scene knowledge. Therefore, we developed

a system that allows us to capture a 3D model of the real world environment and that

automatically identifies the 3D objects of the scene.

Scene Capturing. Virtual representations of real world scenes can be captured in real-

time using SLAM technology [99]. The combination of SLAM with depth sensors, (e.g.,

KinectFusion [65]) allows live capturing of detailed models, either as volumes, depth images

or polygon meshes. Figure 5.13(b) shows the output of an open source KinectFusion

implementation1 applied to the scene shown in Figure 5.13(a). We generally acquire a

textured virtual representation of the real world, so that we can fill holes, if the scene is

modified by the view management approach and scene objects are moved out of place.

Models can be constructed with monocular SLAM technology, stereo SLAM, or depth

sensors. Alternatively, models can also be reconstructed using an online reconstruction

service. While capturing the scene, the data is processed in the cloud and sent back to

the user. For example, we created the model in Figure 5.13(c) by using a freely available

online reconstruction service2.

In our prototype system, we create a mesh approximation of the volume generated by

an open source KinectFusion implementation. We reduce the number of voxels by using

a grid filter that calculates the centroid of voxels within a cube having a side length of

1cm. Then, we use a poisson mesh algorithm [75] using the filtered points to create the

mesh representation. We chose the tree depth used for the poisson reconstruction to find

a trade off between reconstruction performance and accuracy of the created geometry. A

tree depth of six allows for more frequent mesh updates, but the details of the geometry are

smoothed. However, the general shape of the object is approximated well. A tree depth of

seven creates a good approximation of the objects at the cost of a lower update frequency.

In our system, we allow the user to switch at runtime between these settings. Hence, a

user may choose faster updates, when the real world scene is rearranged frequently, or a

better mesh approximation with higher visual quality after the scene was arranged.

We create a separate thread for the meshing process to avoid a performance impact on

the rendering thread. In our prototype system, a tree depth of seven took around eight

seconds to reconstruct, while a depth of six took only around two seconds for a point cloud

containing 25k points after filtering. This size corresponds to a complete scan of the scene.

1http://pointclouds.org
2http://www.123dapp.com/catch

http://pointclouds.org
http://www.123dapp.com/catch


5.2. Smart Transitions using Scene Semantics 161

(a) (b)

(c) (d)

Figure 5.13: Scene Representation. Our system works independently of the scene cap-
turing technology or rendering representation. The real scene shown in (a) can be recon-
structed and rendered using different methods, such as (b) rendering colored voxels of a
volumetric representation generated with KinectFusion, (c) rendering a polygonal mesh of
a reconstruction or (d) image based rendering of a reconstructed proxy mesh.

We deployed the prototype on a PC running Windows 7, equipped with an Intel i7 CPU

quad-core 2.66GHz, 12 GB RAM and an Nvidia 780GTX graphics board.

We use an IBR approach to create a textured reconstruction of the real world. The IBR

method provides view dependent updates of the virtual representation (Figure 5.13(d)).

This also improves visual fidelity and the visual similarity between a physical view of

the scene (AR) and a virtual view of the scene (VR). Note the similarity of the IBR in

Figure 5.10(Right) with the real world scene shown in Figure 5.10(Left). We record the

images used for the IBR during the capturing process by sampling images at points that

are located on a regular grid in 3D space. For each point, we store a number of images



162 Chapter 5. Extending the Ego-centric Viewpoint

with viewing directions offset by 45◦. To be able to react to changes to the scene, we

implemented a simple image aging algorithm, which expires stored images after a certain

amount of time. Alternatively, images can also expire when the geometry shown in the

image changes.

(a) (b)

Figure 5.14: Reconstruction Feedback and Guidance. (a) We overlay the point cloud from
the KinectFusion tracker in real-time to provide reconstruction feedback. (b) To support
the user during scene capturing, we visualize viewpoints that have not yet been visited by
rendering arrows around the objects segmented by the scene analysis.

To support the user in capturing the real world scene, we provide reconstruction

feedback to the user by rendering the currently reconstructed point cloud in AR (Fig-

ure 5.14(a)). In contrast to the mesh representation, this visualization is updated almost

instantaneously. Furthermore, the system can guide the user around objects in the scene

to ensure that all sides of an object have been viewed with the camera (Figure 5.14(b)).

Arrows around the object guide the user to viewpoints that have not been visited before.

Arrows are removed when the viewpoint has been visited. To enable this feature, we use

automatic scene segmentation, which is discussed in the next section.

Scene Analysis. To be able to modify certain elements of the scene, we need to acquire

not only a virtual representation, but also scene knowledge, e.g., about the single objects

contained in the scene. Niederauer et al. [100] show how to generate semantic information

from a 3D mesh. Additionally, the semantic information can be derived from others

sources such as object recognition from captured video data [25]. Sensors in mobile devices

facilitate the analysis by providing information about gravity or compass reading, which

allows to identify a ground plane or a specific direction.



5.2. Smart Transitions using Scene Semantics 163

We need scene information for controlling the camera, but also for the transition be-

tween different AR and VR views. Depending on the user’s current task, selecting a

particular object can trigger a different viewpoint change. For instance, when selecting

the ground plane during authoring, the virtual viewpoint might transition to a top-down

view to allow the user to arrange virtual objects on the ground plane. However, during a

game session, the camera may transition to a ego-perspective on the ground level.

Figure 5.15: Scene Segmentation. We automatically segment the scene to identify the
ground plane defining the world coordinate system and single objects on the ground plane.
We use this knowledge to control the viewpoints of transitions. Colors represent the
segmented object.

In this thesis, we focus on tabletop scenarios (e.g., Figure 5.13(a)). We identify the

plane corresponding to the table and the single objects on the table by segmenting the

reconstructed point cloud. The plane is identified using a sample consensus method that

fits a plane model. After removing the plane points from the point cloud, we identify point

clusters based on Euclidean point distances. Using this simple segmentation, the system is

now able to differentiate between the ground plane and single scene objects (Figure 5.15).

Additional information can be added to the analysis using domain knowledge. Because

our example scene consists of houses, we can identify walls and roofs of the houses, either

geometrically or by defining every point lying above a certain height to be a roof.

5.2.4 Context-Aware Transitions

Context-aware transitions make use of the data gathered from the scene analysis to control

the viewpoint of the virtual camera. Aside from having knowledge about the objects in

the scene, we also use the mesh normals to control the camera orientation. For instance,



164 Chapter 5. Extending the Ego-centric Viewpoint

the plane normal defines the up vector of the world so that virtual geometry and virtual

cameras can be placed with correct up orientation. We also use the normals of the convex

hulls of objects to orient cameras towards the geometry. We use the normals of their

convex hull to achieve a more homogenous normal distribution.

Transitional Camera Control. The context-aware transitional camera control

changes from the AR view to an automatically calculated virtual viewpoint. The lo-

cation of this viewpoint is determined by taking the semantic knowledge of the scene and

the current task into account. To trigger the transition to the calculated viewpoint, a user

can tap on any element of the scene. After reaching the viewpoint, the user can navi-

gate the virtual scene with the provided camera manipulator. To provide feedback about

the possible target viewpoints, we display icons representing the calculated viewpoints for

these locations. These visual icons are activated by dragging the finger over the scene

using a hover or swipe gesture.

The results for our test scene are shown in Figure 5.16. For the viewpoint calculation,

we assume an authoring task using the reconstructed scene. Hence, the semantics are

interpreted to reflect that task. When the user taps on the ground, the system switches

to a map like top-down view and a panning camera manipulator. When the user taps

on the top of an object, we provide a top-down view, but this time closer to the object.

In both cases, the normal of the ground plane is used to orient the camera to look from

top down. When the user clicks on the surface of an object, we automatically provide a

close-up viewpoint, which uses the normal of the ground plane as up vector and is oriented

towards the geometry using the normal of its convex hull. In the close-up view, we switch

to an orbit manipulator to rotate around the object. Once in VR, the user is free to choose

other viewpoints.

Transitional Interaction. A context-aware transitional interaction can be used to

complement interactions that were started in the AR view. The user can indicate that an

interaction that was started in AR should be continued in VR by pressing on the same

location on the screen, without releasing it. The system then seamlessly switches to a

viewpoint that is most appropriate for the current task. Hence, the interaction of the user

is not interrupted by performing a gesture to switch to VR.

In Figure 5.17, the user starts drawing a path in AR and cannot continue drawing,

because the view is blocked by scene geometry. By stopping and holding the interaction

at the end of the path, the system recognizes the user’s intention to continue drawing and

switches to a virtual viewpoint. The viewpoint is top-down, because it is best suited for



5.2. Smart Transitions using Scene Semantics 165

the task and scene semantics. The user can continue drawing in VR and pan the camera

over the scene to extend the path in areas not reachable from the AR view.

Figure 5.16: Context-Aware Transitional Camera Control. Our system chooses different
navigation modes and viewpoints in function of an area selected by a user. (Left) Visual
icons define which semantic modes are available. By tapping on a visual icon, semantic
navigation modes are triggered, such as (Top) top-down regional view, (Middle) front view
of an object or (Bottom) top view of the object.



166 Chapter 5. Extending the Ego-centric Viewpoint

Figure 5.17: Context-Aware Transitional Interaction. Authoring and manipulating 3D
content requires constant camera manoeuvring for accomplishing the task. (Left) The
user in the AR mode cannot continue the drawing task behind the trees because of limited
visibility. (Right) Our technique allows the user to switch to a more adequate viewpoint
without stopping the interaction.

Figure 5.18: Transitional Zooming. (Top) To achieve a close-up view of a real model, a
user can directly zoom in an AR view. (Bottom) A user can also zoom out of the AR view
to get an overview of the scene. When zooming, the view gradually fades to the VR view
when a certain distance threshold is reached. We use a virtual grid as a visual feedback
to notify the user that the switch from AR to VR is imminent.



5.2. Smart Transitions using Scene Semantics 167

5.2.5 Intermediate Transitions

Intermediate transitions switch to a VR view, but are still loosely connected to AR. From

an intermediate transition, a user can always use a context-aware transition to continue

navigating in VR.

(a) (b)

Figure 5.19: Scene Zooming Methods. (a) A pure digital zoom causes artifacts in the
video image. (b) We zoom into a virtual representation, which provides close-up views
with higher resolution.

Figure 5.20: Spring Loaded Navigation. A user may want to switch to areas that are not
visible from the current AR view. We provide a spring loaded navigation technique that
allows a user to rotate around an object directly from the AR view. When the user stops
interacting the technique switches back to AR.

Zooming. When showing AR applications on mobile phones, we noticed that users



168 Chapter 5. Extending the Ego-centric Viewpoint

regularly tried to zoom into the AR view to look at details of the real world scene or the

augmentation. A naive implementation might digitally zoom the video image and adjust

the augmentations accordingly. However, at higher zoom levels, the quality of the video

image degrades. To avoid this decrease in quality, we developed a transitional zooming

technique that gradually replaces the video with the virtual representation, as the user

zooms in on the model. The virtual geometry is able to provide more detailed close-up

views than simple digital zooming (Figure 5.19). The virtual geometry also allows users

to zoom out of the AR view to get an overview of the scene from a larger distance. While

being in a zoomed view, the system continues tracking as in the AR view. We use the

tracked camera pose to directly control the viewpoint of the virtual camera so that the user

can naturally explore the scene by moving the mobile device in the real world reference

frame.

The zooming is situated in the continuum between the AR view and the VR view.

When zooming, we gradually blend to the other view mode when a certain threshold is

reached. We indicate this threshold by adding a fading virtual grid before starting to blend

to the other view mode. When virtual objects are closer than the blending threshold, we

switch to the virtual model before this threshold to avoid zooming through this object.

Zooming can be controlled with a swipe gesture, or on a touch screen with a pinch gesture.

The steps of the technique are shown in Figure 5.18.

Spring-Loaded Navigation. The context-aware transitional techniques allow a user

to quickly navigate to virtual viewpoints of those parts of the scene that are visible from

the current viewpoint. To investigate the occluded areas, the user either must change the

physical AR viewpoint or manipulate the virtual camera after switching to a VR viewpoint.

To avoid these detours, we introduce a spring-loaded navigation technique that enables

users to quickly change to a virtual viewpoint of the occluded areas (Figure 5.20).

The spring loaded navigation allows the user to investigate invisible areas by rotating

the virtual model, while still being in the AR view. To activate the spring loaded nav-

igation, the user taps and holds a location on the screen, which triggers a transition to

the VR view. The user can then drag the view to initiate a rotation around the pressed

region. To be able to rotate around an object, we allow users to interrupt the dragging

to reposition the input. When the user does not interact with the screen for a certain

amount of time, the viewpoint transitions back to the current AR view.



5.3. Multi-perspective Rendering 169

5.3 Multi-perspective Rendering

The previously presented transitional techniques expand the egocentric viewpoint of the

user by providing a virtual copy of the real world object. In this Section, we present the

alternative method of multi-perspective renderings that also expand the viewpoint. In

constrast to transtitional interfaces, multi-perspective renderings typically do not allow

for free viewpoint exploration, but integrate the additional viewpoints into the current

view of the user.

We present a method to create and add renderings of secondary viewpoints to an object.

We demonstrate that the method can reveal otherwise occluded parts of the object or parts

that are small in scale, thus providing an overview (see Section 5.3.1). Furthermore, we

presented embedded views that expand the viewpoint of the user by allowing views around

the corner of buildings (see Section 5.3.2).

5.3.1 Secondary Viewpoints of Objects

Figure 5.21: Handmade secondary views. Small parts do not explode in the main view
onto the explosion. Instead, they have been exploded in an additional presentation shown
as label (Image adapted from [94]. c© IKEA.)

Illustrators often make use of secondary views to reveal more information in a drawing.

In Figure 5.21, the illustrator decided to add secondary views to zoom instructions of

the manual. Using this method, a viewer not only gets an overview of the assembly

and the location of the assembly instructions, but also gets detailed instructions that

are visualized in the secondary views. Inspired by hand-drawn illustrations, we create

secondary views that we use to increase the overview of compact explosion diagrams that



170 Chapter 5. Extending the Ego-centric Viewpoint

have been discussed in Section 3.1.4.

Figure 5.22: Secondary views and compact explosion diagrams. We combine the creation of
secondary views with compact explosion diagrams to increase the overview of the exploded
parts. Using secondary views, we can visualize occluded parts or items that are small in
scale. To reduce the number of annotated viewpoints, we reuse annotations for repeating
items such as the black screws.

Even though the optimization process of compact explosion diagrams selects the best

combination of representatives, some of the subassemblies may still be presented in a very

small scale or highly occluded. We compensate for these problems by rendering poor

explosions of subassemblies from a more suitable point of view. The renderings from

secondary points of view allow to zoom small parts as well as to resolve occlusions, which

appear from the main point of view (Figure 5.22).

In the following, we describe the integration of the creation process of secondary views

into the optimization of compact explosion diagram.

Detecting Poor Explosions of Subassemblies. Our system is able to determine

poorly presented parts of the explosion diagram by analyzing the final combination of

representatives. The system evaluates each quality parameter of a representative individ-

ually and creates renderings from a secondary point of view, if one of them falls below an

adjustable threshold. Since the footprint of the unexploded elements can be neglected for

a rendering from a secondary point of view, we scale down the impact of this parameter

by lowering its threshold to the minimum. However, even though the detection of poor

explosions on the final rendering allows us to increase the effectiveness of the compact

explosion diagram, we select poor elements of the representation independent of represen-

tatives. In consequence, we do not generate an optimal presentation with respect to the

visibility of representatives.



5.3. Multi-perspective Rendering 171

Our system detects poorly presented parts during the selection of representatives and

integrates the identification of candidates for a secondary rendering into the overall layout

optimization process. In each iteration of the algorithm, which evaluates a new combi-

nation of representatives, our system analyzes the visibility and the projected size of the

explosion of every single subassembly. If any of the evaluated parameters falls below an

adjustable threshold, we exclude it from the quality calculation of the current combination

of representatives. This strategy results in a quality value, which represents only the rel-

evant parts of the explosion diagram, but not those which will be presented from a more

suitable point of view in a later stage in the rendering pipeline.

By integrating the selection of poorly visibly explosions of subassemblies into the com-

bination of representatives, we exclude poorly presented subassemblies from the layout

evaluation. Consequently, the final combination will be better for the representatives

which are not presented from a secondary point of view. Another advantage of this ap-

proach is that it allows us to control the number of secondary points of view and, thus,

to avoid clutter due to an excessive number of insets. However, the downside of this ap-

proach is that the visibility of the already poorly presented subassemblies may become

even worse (Figure 5.23(a)). Mentally relating secondary points of view for such cases

may become very difficult, especially if the subassembly is completely occluded in the

compact explosion diagram from the main point of view. Consequently, the system is also

able to analyze already optimized layouts for poorly represented parts (Figure 5.23(b)).

Even though the combination of representative subassemblies may not be perfect, if the

visibility of all parts of the assembly is taken into account, the resulting presentation will

increase the capability of mentally linking the exploded view and the additional render-

ings. Therefore, multi-perspective renderings will be supported best if poorly presented

parts are detected after the optimization of representatives is finished.

Viewpoint Restriction and Linking of Multi-Perspectives. In order to present

the renderings from secondary viewpoints as close as possible to their location in the

compact explosion diagram, we place them as annotations into the main explosion diagram.

However, by spatially separating the presentations from different points of view, we require

the user to put some effort into mentally linking the content of our renderings. To assist

the user in this task, the layout of subassemblies shown in additional views is only allowed

to change if it is completely occluded in the main view onto the explosion. Otherwise,

the layout visible in the secondary view will differ from the one in the main presentation,

which makes it difficult to mentally relate these structures to one another.



172 Chapter 5. Extending the Ego-centric Viewpoint

(a) (b)

Figure 5.23: Multi-perspective rendering as a post-process versus integrated multi-
perspective rendering. (a) Poorly presented explosions may become even worse, if they
have been removed from the layout optimization. Notice the occluded wheels and the re-
sulting lack of context to mentally link the annotation to the main representation. (b) By
optimizing the combination of all representatives before rendering from secondary points
of view, chances are better to provide enough contextual information to mentally link the
content in the secondary with the one in the main rendering.

In addition, we restrict the offset between the secondary viewpoint and the main

viewpoint to an adjustable threshold. Otherwise, the difference between the secondary

viewpoint and the main viewpoint may lead to presentations, which are difficult to read.

In figure 5.24(a), the secondary point of view is offset by more than 90 degree to the main

point of view. In case of the rear landing gears, the difference reaches nearly 180 degrees.

The mental linking between the views may become difficult, if the points of view have been

offset too far. Therefore, we restrict secondary viewpoint to vary only within a certain

range to the main viewpoint (Figure 5.24(b)).

To compute a secondary point of view, we do not only include the subassembly itself,

but also consider its contextual information. Otherwise, our rendering may not show

any information besides the subassembly, which may also influence the ability to relate

the renderings to one another (Figure 5.24(c)). Additional parts can be forced into the

view by adding weight to the measure describing the visibility of the rest. However, since

these additional parts may increase visual clutter, we introduce a new parameter to the

optimization which controls the amount of presented contextual elements. Only those

parts are considered to be contextual information, which are in direct contact with the

representative subassembly. We measure the amount of contextual information by using



5.3. Multi-perspective Rendering 173

(a) (b)

(c)

Figure 5.24: Linking multi-perspective renderings to their original location. (a) The views
depicted in the annotations do not correspond with the view on the layout. This is
irritating, and mentally linking of annotations and the corresponding subassemblies may
be difficult. (b) The secondary view is restricted to stay close to the main point of
view. The annotations are less confusing, but lack contextual information. (c) Adding
contextual information further supports mentally linking the content of annotations to
their counterparts in the main view.

the size of its 2D projection, which we force to be within a certain distance to an optimal

value.

Equation 5.1 describes the contextual quality measure, which is based on the distance

from the optimal amount of contextual information. The difference between the thresh-

old value contextTh and the normalized amount of pixel showing contextual elements

(contextP ixel), ideally, must be close to zero. We chose a threshold value of approxi-

mately 0.33, which scores points of view highest, if a third of the corresponding rendering

is covered by contextual information. Such a presentation conforms with the rule of thirds,

which is, according to Gooch et al. [48], the best known rule of layout.

contextQuality = (1− |contextTh− contextP ixel|) (5.1)



174 Chapter 5. Extending the Ego-centric Viewpoint

(a) (b)

(c)

Figure 5.25: Viewpoint optimization. (a) Ineffective representative explosions due to ar-
bitrary viewpoint selection. (b) Even though the quality parameters of all representatives
have been taken into account, an inappropriate view on the explosion diagram may be
chosen. (c) Front facing viewpoints have been weighted higher to prefer renderings of
frontal views.

To ensure an unobstructed view onto the explosion of the subassembly from a secondary

point of view, we have to put a higher emphasis on the visibility as well as the direction

of the explosion. Otherwise, close objects may occlude parts of the representative, or

representatives explode into to the viewing direction, making the secondary point of view

less valuable.

Compact explosion diagrams which consist of a large number of small subassemblies

may lead to a cluttered presentation of an equally large number of annotations. To make

efficient use of the available space, we reduce the number of annotations by combining

similar ones into a single annotation (Figure 5.22). However, even if we combine certain

subassemblies within a single secondary presentation, the amount of annotations is still



5.3. Multi-perspective Rendering 175

unpredictable. Therefore, we assign importance values based on the visibility of annotated

parts. This allows our system to select the most important annotations until the available

screen space is filled.

Viewpoint Optimization. The system described so far optimizes a manually selected

viewpoint. To further automate the generation of compact explosion diagrams, we opti-

mize its main viewpoint as well. To render from a proper point of view, we first compute

the optimal layout for different viewpoints, before we select the one with the highest score.

Similar to previous approaches, we select a set of candidate viewpoints by sampling the

bounding sphere of the object of interest [48, 120]. The orientations are derived for each

candidate viewpoint by pointing the camera to the center of the bounding sphere. An

adjustable threshold determines the number of equidistant sample points on the sphere.

Good viewpoints maximize the quality of combined representative explosions, just as

bad viewpoints may result in incomprehensible presentations, even after optimizing the

layout according to the set quality parameters. For example, the chosen secondary point

of view onto the wheels of the airplane in Figure 5.25(a) does not show the explosion

direction. Furthermore, all elements except the exploded wheel are occluded. However,

the layout is optimal for this viewpoint.

The quality of viewpoints is evaluated using the parameters presented in section 3.1.4.4.

By performing the optimization of representatives for all viewpoints on the bounding

sphere and selecting the viewpoint with the highest score, the system selects the best

viewpoint combined with the best representative explosion. Notice the different represen-

tations in the annotations of the front wheels in Figure 5.25(a) and 5.25(c).

However, even though this algorithm allows us to represent the explosions from an

optimal point of view, with respect to the quality parameter of its explosions, the object

itself may not be sufficiently represented from this viewpoint. For example, Figure 5.25(b)

shows the view with the highest score on the exploded representatives. However, the

view from the bottom does not provide a good view on the airplane itself. Such defective

viewpoints were studied by Blanz et al. [18]. They found out that users select viewpoints

which maintain the natural up-orientation of the object, while simultaneously avoiding

occlusions. In addition, rather low diagonal views were often preferred, showing objects

from familiar positions which contain as much information as possible. Based on this data,

we allow users to influence the allowed viewpoint selection by weighting a certain range

of viewpoints higher, than others. Using this restriction, we select the viewpoint with the

highest quality value, while simultaneously clearly presenting the object of interest (Figure



176 Chapter 5. Extending the Ego-centric Viewpoint

5.25(c)).

5.3.2 Embedded Views in Real World Environments.

A common application of AR is to support users in navigation tasks by overlaying naviga-

tion aids on the real world. Compared to a traditional map view, the user does not need

to mentally switch anymore between an exocentric map view and a personal view of the

real world, because the desired route is indicated directly in the user’s current video-based

view. Additionally, this approach provides more context and is easier to use than GPS

navigation systems, since the real view of the world is presented to the user instead of a

virtually simplistic representation used in GPS systems.

Even though the presentation of navigation aids is improved when overlaying them on

the current view of the user, the inherent egocentric viewpoint of mobile AR enforces a

strong limitation on the field of view of the user and the range of viewpoint locations. The

user has limited range of information, due to the limited content that can be presented

in the AR egocentric viewpoint. Compared to a map overview, users can only see route

changes up to the next visible turn, because occlusions block the view on the navigation

aids. Combining the AR navigation aid with a map overview, shown on a part of the screen,

allows users to investigate the route lying further ahead, but at the cost of occupying some

of the already limited screen-space of mobile devices. Furthermore, adding the map as

a second spatial representation of the world reintroduces the cognitive effort of switching

between different views.

We present embedded virtual views, which provide additional, spatially registered and

virtual views on upcoming changes of the route. As presented in Figure 5.27(b), the

embedded view naturally extends the egocentric viewpoint of the user and shows the oth-

erwise occluded navigation aid in the real world context (Figure 5.27(a)). The technique

is intended to support pedestrians using their mobile handheld device for navigation.

Typically, users are navigating turn-based and do not walk with the device always

extended in front of them. They orient themselves at key locations, like crossings, using

the provided navigation aid, and walk to the next key location. We believe that the

presented technique can reduce the time required for orientation and make users more

confident during navigation, because the look-ahead view allows them to see more than

only the next route change and also provides visual context for the navigation aid.

The example images were created in a table-top, real world test bed consisting of paper

models and their virtual counterparts. A virtual navigation aid shows a path through the



5.3. Multi-perspective Rendering 177

model (Figure 5.26). The images were recorded from a handheld camera moving through

the scene.

Figure 5.26: The test bed used for testing the different embedded views. The models are
made from paper. The small image shows the corresponding virtual geometry.

(a) (b)

Figure 5.27: An embedded virtual view allows users to follow a guided route, without
leaving the egocentric viewpoint. (a) The navigation aid turns around the corner and the
user’s view is blocked by the building. (b) By extending the egocentric viewpoint with an
additional embedded virtual view, the user is still able to perceive the route indicated by
the navigation aid. Note that the additional view embeds the navigation aid correctly in
the environment.

An embedded virtual view is used to reveal an AR navigation aid, which is occluded

by real world structures, such as buildings in urban environments, lanes of houses in

residential area or hills in rural areas. For this purpose, the view is spatially registered



178 Chapter 5. Extending the Ego-centric Viewpoint

with the world and placed at the location where the navigation aid is occluded by real

world structures. The navigation aid naturally passes into this view and provides the user

with a view on otherwise occluded upcoming route changes (Figure 5.27(b)).

An embedded virtual view should seamlessly integrate with the surrounding environ-

ment. The integration is already indicated in the example image, where the left and right

borders are left open so that the content of the embedded view merges with the respective

scene elements, such as the red building on the left. In Figure 5.27(b), the embedded view

is projected onto a rectangular portal surface. However, bent portals such as shown in

Figure 5.29 are also possible, which increase the field of view of the embedded image and

thus reveal more of the occluded scene.

(a) (b) (c)

Figure 5.28: Comparison of egocentric occlusion management techniques for revealing
a navigation aid. (a) Ghosting, a typical x-ray vision technique, makes the occluding
building transparent. The route augmentation and the context it is embedded into are
revealed at the cost of screen-space. (b) A mirror also reveals route and context, and saves
screen-space. However, mentally linking the mirror image and the world may be hard. (c)
An integrated image reveals the occluded information and its context, and also uses less
screen-space than the ghosting technique. Compared to the mirror, the mental linking
between the view and the real world may be easier.

Additional Virtual Views. Aside from the described embedded views, our system also

supports two simple mirror techniques, which we implemented for comparison. The first

one places a mirror at the location, where the navigation aid is occluded. The approach

is similar to common traffic mirrors, which allow car drivers to see otherwise invisible parts

of the street (Figure 5.28(b)). We decided to increase the size of the mirror compared to a

traffic mirror, so that users can already recognize structures from afar. The image shown

in the mirror is view dependent, and thus changes with the location of the user. To always

show the same view around the corner we created a variation of the real mirror, which



5.3. Multi-perspective Rendering 179

always provides the same view around the corner. Hence, in this fake mirror the view

stays static, even if the user changes location. The fake mirror is similar to the video

mirror presented by Au et al [4].

Comparison of Virtual Views. In the following, we compare an embedded view with

the fake mirror view and with ghosting, which is a traditional occlusion management

technique. Aside from the view-dependency, real mirrors have the same properties as fake

mirrors and, therefore, are not part of the comparison. Consider Figure 5.27(a), where

an artificial navigation aid indicates a path for the user. The path turns around the

corner and is occluded by a building. Using ghosting (Figure 5.28(a)), the occluder is

removed and the route is revealed. To enhance the integration of the navigation aid in the

environment, additional buildings along the path are also shown. This approach removes

a large portion of the occluding building and requires half of the screen-space.

An artificial mirror (Figure 5.28(b)) uses less screen-space and allows the user to see

around the occluder, but users may not be able to mentally link the revealed content and

the occluded data, because the view is separated from the scene. Furthermore, the mirror

image is view-dependent and changes with the position of the user. Exchanging the mirror

against the fake mirror technique would remove the view-dependence, but still requires

effort to mentally link the content with the real world. Using an embedded virtual view, the

user can look around the occluding building (Figure 5.28(c)). Like the mirrors, the view

resolves the occlusion and, at the same time, saves screen-space. The integrated image is

smaller than the structures revealed with the ghosting technique, while still showing the

navigation aid and buildings along the path. However, we believe that the mental linking

of the shown content with the real world is easier than with virtual mirrors.

Implementation. We use CUDA ray tracing to create the virtual views in real-time.

Ray tracing allowed us to quickly prototype and test the different approaches. The virtual

mirrors were created by simple reflecting the rays at the mirror surfaces. The embedded

view is achieved by bending the viewing rays of the camera at a portal placed at the corner

of the building, similar to the technique presented in Cui et al. [30].

Rays are emitted from the camera center located at the location of the user. When

they intersect the portal geometry, they are redirected using the surface normal at the

intersection, and re-emitted through the portal into the virtual representation of the world.



180 Chapter 5. Extending the Ego-centric Viewpoint

5.4 Conclusion and Future Work

We presented transitional interfaces and multi-perspective renderings that allow users to

see more than what is visible from a single AR view. Note that, while we always discussed

these approaches separately, transitional interfaces and multi-perspective renderings are

not mutually exclusive. They can easily be combined into one interface. For instance,

consider the 2DSEP interface of the OCE techniques (Figure 5.2(d)). In the 2DSEP

interface, a ring of images surrounds the virtual copy of the real world building that the

user wants to explore. This ring is a multi-perspective rendering that provides an overview

of the building. Participants that used the interface during the evaluation could employ

this ring to quickly navigate to viewpoints containing the target element.

For real world buildings, such a ring of images can be created using internet photo

collections. In fact, our method to create compact visualizations of photo-collections can

be used to select appropriate images from different viewpoints of real world buildings (see

Section 3.1.3). For a tabletop environments, a textured copy of a real world scene can be

created using an online reconstruction system, such as the one presented in Section 5.2.3.

The reconstruction can be used as input to render the additional viewpoints for the image

ring visualization. This system can also be used to render the secondary views we discussed

at the example of compact explosion diagrams.

Aside from using images to provide an overview of objects, we also presented a proto-

type system for creating embedded views for navigation, which allow users to look around

occluding structures by locally bending the viewing rays of the camera. We demonstrated

its usage as navigation aid to allow users to peak on upcoming changes of the route.

The approach currently requires spatial knowledge data provided by a virtual model

of the occluded scene. Although Google Earth3 and Bing Maps4 contain collections of

3D models of certain urban areas, in general, such dense 3D models are not yet available.

Therefore, we want to explore other input sources, such as geo-located photos, which can

be drawn from online photo collections. Another source of images are databases such

as Google Streetview5 or Bing Streetside6 that cover the street level of almost all major

cities.

The current embedded views do not provide an efficient visual registration between

video camera and virtual content. Hence, the views do not merge seamlessly with the

3https://earth.google.com
4http://www.bing.com/maps/
5https://www.google.com/maps/views/streetview/
6http://www.microsoft.com/maps/streetside.aspx



5.4. Conclusion and Future Work 181

Figure 5.29: The embedded view is not limited to rectangular surfaces. This view uses a
bent shape to provide an increased field of view on the occluded regions.

scene. We want to investigate how we can provide seamless visual registration between

the video image and the virtual content using more advanced rendering techniques and

image analysis algorithms. The integration of the image is already indicated in Figures

5.27(b), 5.28(c) and 5.29. Note that the embedded view shows part of the red building in

the left region.

Similar to the ring of images of the OCE techniques, the embedded views can also

be used as starting point for a transitional interface. For instance, they allow users to

select a POIs around the corner, or to engage into a Google Streetview experience. Multi-

perspective renderings can also be used to access objects that require zooming, because

they are either too close or too distant from the user’s position. Our current OCE designs

only considered the ideal object distance to the real world object. In such situations, it

may be feasible to use multi-perspective renderings to zoom distant objects [58], or to

provide a map view that is integrated into the real world [35].

Combinations of multi-perspective rendering and transitional interfaces may require

specialized transitions to connect the views. In our evaluations, we use OCE interfaces that

provide a straightforward seamless transition to zoom a virtual copy of a real world object.

However, we should also consider using smart transitions that use semantic information

to propose strategically chosen VR viewpoints, which are relevant for the current task of

the user.

Smart transitions also enable a wide variety of new application scenarios in AR, such

as more immersive AR games. A user can switch to an egocentric view of the game, or

follow virtual characters that otherwise would disappear behind geometry. Furthermore,



182 Chapter 5. Extending the Ego-centric Viewpoint

new game designs can make use of a combination of AR and VR views and the transitions

between them.

(a) (b)

Figure 5.30: Example Urban Planning. (a) In an urban planning application users rear-
range the scene to identify a good space design. (b) Using our system, users can achieve
egocentric viewpoints of the scene and visit views that would otherwise be unreachable.

Other application areas are architecture and urban planning. For instance, in a table-

top scenario, users can rely on tangible objects to perform architectural planning. Using

transitional interfaces combined with smart transitions, they can switch to a virtual view

showing the planned areas from an egocentric virtual viewpoint. This allows users to

verify the placement of buildings and detect undesired occlusions from certain viewpoints.

As shown in Figure 5.30(a), users might rearrange the trees in the architectural model

of a public space to determine a good placement for enhancing the appeal of the space.

Using our techniques, they can verify the result from an egocentric perspective. They can

also move to viewpoints otherwise blocked by the real environment. In Figure 5.30(b), the

user switched to the top of the roof looking down the alley from the direction opposite

to the AR view, a viewpoint that would be blocked by the table. In future work, we will

evaluate this type of techniques in the context of gaming and urban planning.

The experiences and feedback gathered from our evaluations of transitional OCE tech-

niques make us confident that such interfaces are feasible and practical in real world

conditions. Future work will investigate the interfaces in real world conditions in more

depth.



Chapter 6

Conclusion

Contents

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.2 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

This thesis presented research performed in the context of situated visualization. We

developed filter and view management techniques that handle data overload for different

data types and investigated the aspect of temporal coherence. Our filter approach avoids

data overload by either removing redundant items, or by building a data hierarchy by

aggregating items into clusters and selecting items from the hierarchy. Furthermore, we

presented interaction and visualization techniques that compensate for the inherent ego-

centric viewpoint of users. This last chapter reflects on the presented research and also

tries to give a general outlook on situated visualization. Note that, while we performed

our research in the context of handheld AR, the presented methods can also be applied to

other AR platforms, such as an HMD.

In the following, a summary of the presented work is provided, followed by final remarks

about lessons learned and future research directions.

6.1 Summary

Combining Filtering and View Management. The combination of filtering and

view management for AR applications allows developers to present overview visualization

of input data to the user, without losing information. Compact visualizations achieve this

goal for different data types by using an optimization algorithm that removes redundant

information from the visualization (see Section 3.1). First, redundancies are detected

183



184 Chapter 6. Conclusion

and grouped, then an optimization algorithm selects one representative item to represent

each group. The presentation of compact visualizations can be refined further by utilizing

hierarchical structures in the input data (see Section 3.2.2). Such hierarchical structures

basically allow the algorithm to remove redundancies to make the presentation even more

compact.

If no redundant data is available, clustering algorithms can be used to create groups of

similar items (see Section 3.2.1). Again, a representative item must be chosen or created

by averaging over all items of a group. However, in contrast to compact visualizations,

showing only one representative item would remove the information about other similar

items of the group. Therefore, users must interact with groups to explore the details of

the data. At the same time, the screen should not become too cluttered when the user

continuously explores the shown groups. We presented an adaptive information density

approach, which creates a hierarchical representation of the input data by grouping its

items and then selects groups from different levels of the hierarchy, based on the currently

available screen space and the potentially created clutter.

Temporal Coherence. AR applications are highly interactive. Even though users

maybe cannot interact with the data itself, view management algorithms often update the

layout of the presented information, when the user changes the AR viewpoint. Therefore,

we investigated several methods to achieve temporally coherent layouts during viewpoints

changes.

We investigated two different approaches. First, the filtering step of an application can

be influenced to achieve better temporal coherence of the view management algorithm.

Second, we improved temporal coherency by explicitly reducing the degrees of freedom of

the used view management algorithm.

We demonstrated the first approach within our compact visualization framework,

which optimizes the selection of items with respect to temporal coherency (see Section 4.1).

Additionally, we applied the same paradigm to the presented adaptive information density

algorithm. The algorithm avoids presenting an excessive amount of items on the screen by

selecting items from a hierarchical data structure, based on user preferences and the avail-

able screen space. This reduction of the number of items reduces the amount of conflicts

between the presented items and can improve temporal coherency.

We developed the hedgehog labeling algorithm as part of the second approach (see Sec-

tion 4.2). Instead of simulating annotations in 2D screen space, hedgehog labeling treats

annotations as 3D objects. We improved the temporal coherence by reducing the degrees



6.1. Summary 185

of freedom of the annotation, so that it moves along a single line in 3D space, or a plane

placed in 3D space. Furthermore, treating annotations as 3D objects allowed us to stop

the movement of annotations after the creation of the initial layout. We demonstrated a

similar freezing of 2D annotations, when discussing temporal coherency for compact visu-

alizations of annotations. However, freezing annotations described as 3D objects proved

to be simpler and more effective, which we could show in a quantitative user study.

In this study, we compared the performance of different view management approaches

(see Section 4.3). Participants performed a task, in which they had to locate the same

labels multiple times. Our plane-based 3D hedgehog label approach outperformed the

other view management systems. The strongest difference between the hedgehog system

and these other approaches was that the labels, once the layout was calculated, were frozen

in place in the 3D space relative to the object. The other approaches aligned the labels

with the screen, thereby lacking this fixated spatial 3D representation of labels. Similar to

hedgehog labeling, one approach preserved the order of labels in screen-space. However,

hedgehog labeling also outperformed this approach. This strongly indicates that layout

constraints do not have to be constantly enforced and that the spatial registration of labels

in 3D relative to the object improves the ability of users to keep track of label locations

and to interact with the labels.

Extending the Ego-centric Viewpoint. AR is inherently limited to a single ego-

centric viewpoint. In order to expand this ego-centric viewpoint, we presented Object-

Centric Exploration (OCE) techniques that allow users to investigate a virtual copy of a

real world object, instead of physically moving around an object (see Section 5.1). OCE

techniques are transitional interfaces that seamlessly switch from the AR view to the

virtual view of an object. To improve the transition to VR, we proposed smart transitions

that take semantic information of the scene into account when placing the virtual camera

and selecting the mode of operation of the camera (see Section 5.2). For instance, based

on the current task of the user and the scene structure, the system may decide to place

the virtual camera to achieve a close-up view of an object. When the user operates the

virtual camera, it moves around the object.

We also explored multi-perspective renderings as means to compensate for the ego-

centric viewpoint of AR (see Section 5.3). A multi-perspective rendering shows additional

viewpoint of the scene by integrating these viewpoints into the current view of a user. We

demonstrated this approach as part of the OCE techniques, where a circular arrangement

of images around an object provides an overview of this object. In addition, we included



186 Chapter 6. Conclusion

secondary viewpoints into compact visualizations to show viewpoints of objects, which

would otherwise be too small or occluded by other objects. Furthermore, we presented a

navigational application that allows users to peek around corners to follow the proposed

route.

6.2 Final Remarks

Combine methods. Although, the techniques were developed separately over the

course of the research effort, they complement each other. For instance, we demonstrated

that compact visualizations can be supported by additional multi-perspective renderings

such as secondary views. This allows users to also get an overview of occluded data.

Instead of moving the AR viewpoint to reveal the occluded data, a transitional interface

can provide smart transitions to zoom the data. A tourist who investigates different

views of a large real world building would benefit greatly from such a combination.

Hence, the combination of the presented techniques can create a potentially very powerful

exploration tool for situated visualization.

Rethink known approaches. Care must be taken when designing situated visualiza-

tions for AR. Many conventions of visualization were developed for static images or for a

desktop information space and do not take the dynamics of AR into account. For instance,

we initially used a standard view management technique that worked in 2D image space for

creating layouts of external labels. However, this caused issues with temporal coherence.

In addition, the registration of the labels relative to the object was not stable, because the

labels were floating in image space. To remedy these issues, we developed a constrained

3D view management approach that sticks label to the 3D object. Another solution is

to use a discrete update approach, which does not resolve layout violations immediately.

The success of the hedgehog labeling in the presented study regarding different update

methods for view management (see Section 4.3.1) suggests that layout violations may be

acceptable to a certain degree. This was also suggested by Azuma and Furmanski [8] in an

early AR view management paper as a method to potentially improve temporal coherence.

However, we are not aware of any followup work regarding this approach. Hence, while

information visualization provides many solutions for issues that also occur in AR, they

have to be carefully considered when applied to an AR context.



6.2. Final Remarks 187

Always register in 3D. Considering our experience with 3D view management, it

might be best to always register augmentations of situated visualization directly in 3D

space. Consequently, the underlying algorithms and visualizations must be developed

to work in such a 3D space. Registering a visualization in 3D also allows visualization

designers and users to use perspective distortions to convey information about the spatial

arrangement of the data. For instance, we make use of perspective distortions, when we

freeze the planes in our 3D view management approach. Changing the viewpoint creates

a parallax effect that conveys information about the arrangement of annotations.

In addition, registering labels in 3D space allows designers and developers to streamline

their interaction methods. Interaction methods that work with 3D objects can directly be

applied to 3D labels, without a separate solution, which works with 2D representations.

Aside from simple manipulations such as translation or scaling, also more complex inter-

actions can be facilitated. For instance, the transitional interfaces presented in this thesis

can not only be applied to a virtual copy of a real world object, but can also easily in-

clude any associated 3D labels with the same operation. Annotations in 3D space are also

beneficial for collaborative tasks. Using 3D labels, users can not only share the location

of the annotated object in 3D, but also the location of the corresponding 3D annotation

as well.

Explore additional visualizations. In this thesis, we used different types of visualiza-

tions such as explosion diagrams and textual and pictorial annotations. While annotations

are a straightforward visualization for a Point-of-Interest (POI), more complex data such

as measurements of physical properties or statistical data may require different visualiza-

tions. In handmade illustrations and, also, in information visualization, complex data is

often visualized using abstractions. Abstractions can simplify the presentation to easily

understandable concepts and reduce the amount of clutter [37].

Although AR can benefit from such abstractions, they have hardly been explored. In

AR, White et al. [146] use differently sized spatially registered spheres to visualize air

pollution measurements. More recently, Zollmann et al. [153] visualized the progress of

a building construction site over time by abstracting the 3D geometry of the building

(Figure 6.1). Note that, although the diagrams correspond to standard techniques for

visualizing time-varying data, the created visualization is adapted to the needs of AR and

registered to the corresponding real world object.



188 Chapter 6. Conclusion

(a) (b)

(c) (d)

Figure 6.1: Using abstraction to visualize information. (a) and (b) show two reconstruction
of a construction site at different points in time. Presenting only the 3D data does not
easily allow a viewer to draw conclusions about the progress. In (c) and (d) the 3D
geometry is abstracted to 2D diagrams. The abstraction reduces the complexity of the
visualization and also reduces clutter (Images taken from Zollmann et al. [153]).

What is a good visualization? Even though the research on computer-generated

visualizations exists now for more than two decades, it is still not clear what comprises

an effective visualization. Throughout the literature, a main motivation is the avoidance

of clutter [37, 38]. However, there are no standardized measures or procedures to assess

the effectiveness of visualizations [152]. This issue is even more complex in AR, where the

dynamics of the real world influence the effectiveness of the visualization. For instance,

the impact of a visualization can constantly change, because text annotations are not

readable anymore, when placed over the wrong background [82]. It is also not clear which

areas are most suitable for placing the annotations in the field of view of the user. Formal

evaluations of this aspect only were performed recently [101].

Standardize evaluation. Evaluating AR visualizations in real world environments is

very challenging. For instance, due to the dynamics of outdoor environments, it is almost

impossible to run controlled experiments. Therefore, we performed a major part of the



6.2. Final Remarks 189

evaluation of OCE techniques in a controlled laboratory environment. AR visualization

and user interface research would greatly benefit from standardized methods for simulating

AR test environments. This has become an active area of research in the last years [11,

80, 81].

Additional open topics. The research area of situated visualization covers many as-

pects (see Section 1.4). While we provided solutions for some of the discussed challenges,

we did not investigate others. For instance, we did not investigate the area of visual

coherence. Aside from rendering correct geometric occlusions, we did not use any other

coherent rendering methods, such as global illumination estimations [54]. Furthermore, we

did not consider the handling of registration errors in our visualizations [28]. Successful

situated visualization that is applied in different AR conditions must combine solutions

from all of these areas.





Appendix A

Acronyms

List of Acronyms

AR Augmented Reality

DOI Degree of Interest

GPS Global Positioning System

HMD Head-Mounted Display

IBR Image-based Rendering

LOD Level-of-Detail

MR Mixed Reality

OCE Object-Centric Exploration

OOI object-of-interest

PDA Personal Digital Assistant

POI Point-of-Interest

POIs Points-of-Interest

SLAM Simultaneous Localization and Mapping

VR Virtual Reality

WIM World-in-Miniature

191



192

Bibliography

[1] Agrawala, M., Phan, D., Heiser, J., Haymaker, J., Klingner, J., Hanrahan, P., and

Tversky, B. (2003). Designing effective step-by-step assembly instructions. ACM Trans-

actions on Graphics (TOG) - Proceedings of ACM SIGGRAPH 2003, 22(3):828–837.

[2] Ahn, J. and Freeman, H. (1983). A program for automatic name placement. In AUTO-

CARTO 6, pages 444–455.

[3] Ali, K., Hartmann, K., and Strothotte, T. (2005). Label Layout for Interactive 3D

Illustrations. JOURNAL OF THE WSCG, 13:2005.

[4] Au, C. E., Ng, V., and Clark, J. J. (2011). MirrorMap: Augmenting 2D Mobile Maps

with Virtual Mirrors. In Proceedings of the 13th International Conference on Human

Computer Interaction with Mobile Devices and Services, pages 255–264.

[5] Avery, B., Sandor, C., and Thomas, B. H. (2009). Improving Spatial Perception for

Augmented Reality X-Ray Vision. In Virtual Reality (VR) Conference, pages 79–82.

IEEE.

[6] Azuma, R. (1997). A Survey of Augmented Reality. Presence: Teleoperators and

Virtual Environments, 6:355–385.

[7] Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., and MacIntyre, B. (2001).

Recent advances in augmented reality. Computer Graphics and Applications, IEEE,

21(6):34 –47.

[8] Azuma, R. and Furmanski, C. (2003). Evaluating label placement for augmented

reality view management. The Second IEEE and ACM International Symposium on

Mixed and Augmented Reality, 2003. Proceedings., pages 66–75.

[9] Baldauf, M., Frohlich, P., Masuch, K., and Grechenig, T. (2011). Comparing viewing

and filtering techniques for mobile urban exploration. Location Based Services, 5(1):38–

57.

[10] Bane, R. and Hollerer, T. (2004). Interactive Tools for Virtual X-Ray Vision in Mobile

Augmented Reality. In Third IEEE and ACM International Symposium on Mixed and

Augmented Reality, pages 231–239. IEEE.



BIBLIOGRAPHY 193

[11] Baricevic, D., Cha, L., Turk, M., Höllerer, T., and Bowman, D. A. (2012). Hand-held

AR Magic Lenses with User-Perspective Rendering. In International Symposium on

Mixed and Augmented Reality, pages 197–206.

[12] Bell, B., Feiner, S., and Höllerer, T. (2001). View management for virtual and aug-

mented reality. In Proceedings of the 14th annual ACM symposium on User interface

software and technology, pages 101–110, Orlando, Florida. ACM.

[13] Bell, B., Höllerer, T., and Feiner, S. (2002). An annotated situation-awareness aid

for augmented reality. In Proceedings of the 15th annual ACM symposium on User

interface software and technology, page 213, Paris, France.

[14] Bichlmeier, C., Heining, S. M., Rustaee, M., and Navab, N. (2007). Laparoscopic

Virtual Mirror for Understanding Vessel Structure Evaluation Study by Twelve Sur-

geons. In International Symposium on Mixed and Augmented Reality, pages 125–128,

Charlotte, North Carolina, USA. IEEE Computer Society.

[15] Bier, E. A., Stone, M. C., Pier, K., Buxton, W., and DeRose, T. D. (1993). Tool-

glass and magic lenses: the see-through interface. In Proceedings of the 20th annual

conference on Computer graphics and interactive techniques, SIGGRAPH ’93, pages

73–80.

[16] Billinghurst, M., Kato, H., and Poupyrev, I. (2001). The MagicBook - Moving Seam-

lessly between Reality and Virtuality. IEEE Computer Graphics and Applications,

21(1):6–9.

[17] Bimber, O. and Raskar, R. (2005). Spatial Augmented Reality: Merging Real and

Virtual Worlds.

[18] Blanz, V., Tarr, M. J., and Bülthoff, H. H. (1999). What object attributes determine

canonical views? Perception, 28(5):575 – 600.

[19] Bowman, D. A., Koller, D., and Hodges, L. F. (1997). Travel in immersive virtual

environments: an evaluation of viewpoint motion control techniques. In Proceedings of

the 1997 Virtual Reality Annual International Symposium (VRAIS ’97), pages 45–52.

IEEE.

[20] Breen, D. E., Whitaker, R. T., Rose, E., and Tuceryan, M. (1996). Interactive Oc-

clusion and Automatic Object Placement for Augmented Reality. Computer Graphics

Forum, 15(3):11–22.



194

[21] Bruckner, S. and Gröiller, M. E. (2006). Exploded views for volume data. IEEE

transactions on visualization and computer graphics, 12(5):1077–84.

[22] Burigat, S. and Chittaro, L. (2008). Decluttering of Icons Based on Aggregation in

Mobile Maps. In Meng, L., Zipf, A., and Winter, S., editors, Map-based Mobile Services,

pages 13–32. Springer Berlin Heidelberg, Berlin, Heidelberg.

[23] Card, S. K., Mackinlay, J. D., and Shneiderman, B. (1999). Readings in information

visualization: using vision to think. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA.

[24] Caudell, T. and Mizell, D. (1992). Augmented reality: an application of heads-up

display technology to manual manufacturing processes. Proceedings of the Twenty-Fifth

Hawaii International Conference on System Sciences, pages 659–669 vol.2.

[25] Chia, A. Y.-S., Rahardja, S., Rajan, D., and Leung, M. K. (2010). Object recognition

by discriminative combinations of line segments and ellipses. In IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, pages 2225–2232. IEEE.

[26] Chigona, W., Sonnet, H., Ritter, F., and Strothotte, T. (2003). Shadows with a

message. In Proceedings of the 3rd international conference on Smart graphics, pages

91–101. Springer-Verlag.

[27] Cockburn, A., Karlson, A., and Bederson, B. B. (2008). A review of overview+detail,

zooming, and focus+context interfaces. ACM Computing Surveys, 41(1):1–31.

[28] Coelho, E., MacIntyre, B., and Julier, S. (2004). OSGAR: A Scene Graph with

Uncertain Transformations. In Third IEEE and ACM International Symposium on

Mixed and Augmented Reality, pages 6–15. IEEE.

[29] Craft, B. and Cairns, P. (2005). Beyond Guidelines: What Can We Learn from the

Visual Information Seeking Mantra? Ninth International Conference on Information

Visualisation (IV’05), pages 110–118.

[30] Cui, J., Rosen, P., Popescu, V., and Hoffmann, C. (2010). A Curved Ray Camera for

Handling Occlusions through Continuous Multiperspective Visualization. Visualization

and Computer Graphics, IEEE Transactions on, 16(6):1235–1242.

[31] Ding, C. (2002). Cluster merging and splitting in hierarchical clustering algorithms.

In IEEE International Conference on Data Mining, pages 139–146. IEEE Comput. Soc.



BIBLIOGRAPHY 195

[32] Dix, A. and Ellis, G. (2002). by chance: enhancing interaction with large data sets

through statistical sampling. In Proceedings of the Working Conference on Advanced

Visual Interfaces, AVI ’02, pages 167–176, New York, NY, USA. ACM.

[33] dos Santos, S. and Brodlie, K. (2004). Gaining understanding of multivariate and

multidimensional data through visualization. Computers & Graphics, 28(3):311–325.

[34] Dueck, G. and Scheuer, T. (1990). Threshold accepting: A general purpose optimiza-

tion algorithm appearing superior to simulated annealing. Journal of Computational

Physics, 90(1):161–175.

[35] Eduardo Veas, Raphael Grasset, Ernst Kruijff, and Dieter Schmalstieg (2012). Ex-

tended Overview Techniques for Outdoor Augmented Reality. IEEE Transactions on

Visualization and Computer Graphics, 18(4):565–572.

[36] Eissele, M., Kreiser, M., and Ertl, T. (2008). Context-controlled flow visualization in

augmented reality. In Proceedings of Graphics Interface 2008, pages 89–96. Canadian

Information Processing Society.

[37] Ellis, G. and Dix, A. (2007). A taxonomy of clutter reduction for information visual-

isation. IEEE transactions on visualization and computer graphics, 13(6):1216–23.

[38] Elmqvist, N. and Fekete, J.-D. D. (2010). Hierarchical aggregation for information

visualization: overview, techniques, and design guidelines. IEEE transactions on visu-

alization and computer graphics, 16(3):439–54.

[39] Feiner, S., MacIntyre, B., Hollerer, T., and Webster, A. (1997). A touring machine:

prototyping 3D mobile augmented reality systems for exploring the urban environment.

Digest of Papers. First International Symposium on Wearable Computers, pages 74–81.

[40] Feiner, S., Macintyre, B., and Seligmann, D. (1993). Knowledge-based augmented

reality. Communications of the ACM, 36(7):53–62.

[41] Ferreira de Oliveira, M. C. and Levkowitz, H. (2003). From visual data exploration

to visual data mining: a survey. IEEE Transactions on Visualization and Computer

Graphics, 9(3):378– 394.

[42] Fink, M., Haunert, J.-H., Schulz, A., Spoerhase, J., and Wolff, A. (2012). Algo-

rithms for Labeling Focus Regions. IEEE Transactions on Visualization and Computer

Graphics, 18(12):2583–2592.



196

[43] Fournier, A. (1995). Illumination Problems in Computer Augmented Reality. Tech-

nical report, Department of Computer Science, University of British Columbia.

[44] Fua, Y.-H., Ward, M. O., and Rundensteiner, E. A. (1999). Hierarchical parallel

coordinates for exploration of large datasets. In Proceedings of the conference on Visu-

alization ’99: celebrating ten years, pages 43–50. IEEE Computer Society Press.

[45] Fuhrmann, A., Löffelmann, H., and Schmalstieg, D. (1997). Collaborative augmented

reality: exploring dynamical systems. In Proceedings. Visualization ’97, pages 459–462,.

IEEE.

[46] Furnas, G. W. (1986). Generalized fisheye views. Special issue: CHI ’86 Conference

Proceedings, 17(4):16–23.

[47] Goldberg, D., Nichols, D., Oki, B. M., and Terry, D. (1992). Using collaborative

filtering to weave an information tapestry. Communications of the ACM, 35(12):61–70.

[48] Gooch, B., Reinhard, E., Moulding, C., and Shirley, P. (2001). Artistic Composition

for Image Creation. In Proceedings of the 12th Eurographics Workshop on Rendering

Techniques, pages 83–88. Springer-Verlag.

[49] Götzelmann, T., Ali, K., Hartmann, K., and Strothotte, T. (2005). Adaptive Labeling

for Illustrations. In Pacific Graphics. Otto-von-Guericke University of Magdeburg.

[50] Grasset, R., Billinghurst, M., and Dünser, A. (2008). Moving Between Contexts - A

User Evaluation of a Transitional Interface. In International Conference on Artificial

Reality and Telexistence (ICAT).

[51] Grasset, R., Langlotz, T., Kalkofen, D., Tatzgern, M., and Schmalstieg, D. (2012).

Image-driven view management for augmented reality brows ers. In Proceedings of the

2012 IEEE International Symposium on Mixed and Augmented Reality (ISMAR’12),

pages 177–186. IEEE Computer Society.

[52] Gray, H. (1918). Anatomy of the Human Body. Lea&Febiger, 1918.

[53] Gruber, L., Kalkofen, D., and Schmalstieg, D. (2010). Color harmonization for Aug-

mented Reality. In IEEE International Symposium on Mixed and Augmented Reality,

pages 227–228. IEEE.



BIBLIOGRAPHY 197

[54] Gruber, L., Richter-Trummer, T., and Schmalstieg, D. (2012). Real-time photometric

registration from arbitrary geometry. In IEEE International Symposium on Mixed and

Augmented Reality (ISMAR), pages 119–128. IEEE.

[55] Haber, R. and McNabb, D. (1990). Visualization idioms: A conceptual model for

scientific visualization systems. In Visualization in Scientific Computing, pages 74–93.

IEEE Computer Society Press.

[56] Hartmann, K., Ali, K., and Strothotte, T. (2004). Floating labels: Applying dynamic

potential fields for label layout. IN 4TH INTERNATIONAL SYMPOSIUM ON SMART

GRAPHICS, 3031:101—-113.

[57] Hartmann, K., Götzelmann, T., and Strothotte, T. (2005). Metrics for Functional

and Aesthetic Label Layouts. In A. Butz, B. F. and Olivier, P., editors, Smart Graphics,

pages 115–126. Springer Verlag, Berlin.

[58] Hoang, T. N. and Thomas, B. H. (2010). Augmented Viewport: An action at a

distance technique for outdoor AR using distant and zoom lens cameras. In International

Symposium on Wearable Computers (ISWC), pages 1–4. IEEE.

[59] Hoenig, F. (2005). Defining computational aesthetics. In Proceedings of the First

Eurographics conference on Computational Aesthetics in Graphics, Visualization and

Imaging, pages 13–18. Eurographics Association.

[60] Höllerer, T. and Feiner, S. (2004). Mobile augmented reality. CRC Press.

[61] Höllerer, T., Feiner, S., and Pavlik, J. (1999). Situated documentaries: embedding

multimedia presentations in the real world. In Digest of Papers. Third International

Symposium on Wearable Computers, pages 79–86. IEEE Comput. Soc.

[62] Holten, D. (2006). Hierarchical edge bundles: visualization of adjacency relations in

hierarchical data. IEEE transactions on visualization and computer graphics, 12(5):741–

8.

[63] Homem de Mello, L. and Sanderson, A. (1990). AND/OR graph representation of

assembly plans. IEEE Transactions on Robotics and Automation, 6(2):188–199.

[64] Imhof, E. (1975). Positioning Names on Maps. The American Cartographer, 2(2):128–

144.



198

[65] Izadi, S., Davison, A., Fitzgibbon, A., Kim, D., Hilliges, O., Molyneaux, D., New-

combe, R., Kohli, P., Shotton, J., Hodges, S., and Freeman, D. (2011). KinectFusion:

real-time 3D reconstruction and interaction using a moving depth camera. In Proceed-

ings of the 24th annual ACM symposium on User interface software and technology -

UIST ’11, pages 559–568, New York, New York, USA. ACM Press.

[66] J. Newman, G. S., Newman, J., and Schall, G. (2006). Wide-Area Tracking Tools for

Augmented Reality. Advances in Pervasive Computing, 207:3 – 6.

[67] Jain, A. K., Murty, M. N., and Flynn, P. J. (1999). Data clustering: a review. ACM

Comput. Surv., 31(3):264–323.

[68] Jiang, Z., Nimura, Y., Hayashi, Y., Kitasaka, T., Misawa, K., Fujiwara, M., Kajita,

Y., Wakabayashi, T., and Mori, K. (2013). Anatomical annotation on vascular structure

in volume rendered images. Computerized medical imaging and graphics : the official

journal of the Computerized Medical Imaging Society, 37(2):131–41.

[69] Jo, H., Hwang, S., Park, H., and Ryu, J.-h. (2011). Aroundplot: Focus+context

interface for off-screen objects in 3D environments. Computers & Graphics, 35(4):841–

853.

[70] Julier, S., Baillot, Y., Brown, D., and Lanzagorta, M. (2002). Information filtering

for mobile augmented reality. IEEE Computer Graphics and Applications, 22(5):12–15.

[71] Kalkofen, D. (2009). Illustrative X-Ray Visualization in Augmented Reality Environ-

ments. Phd thesis, Graz University of Technology.

[72] Kalkofen, D., Mendez, E., and Schmalstieg, D. (2009a). Comprehensible visualiza-

tion for augmented reality. IEEE transactions on visualization and computer graphics,

15(2):193–204.

[73] Kalkofen, D., Sandor, C., White, S., and Dieter, S. (2011). Visualization Techniques

for Augmented Reality. In Handbook of Augmented Reality, pages 65–98.

[74] Kalkofen, D., Tatzgern, M., Schmalstieg, D., Denis Kalkofen, Markus Tatzgern, and

Dieter Schmalstieg (2009b). Explosion Diagrams in Augmented Reality. In IEEE Virtual

Reality Conference, pages 71–78. IEEE.

[75] Kazhdan, M., Bolitho, M., and Hoppe, H. (2006). Poisson surface reconstruction.

In Proceedings of the fourth Eurographics symposium on Geometry processing, pages

61–70. Eurographics Association.



BIBLIOGRAPHY 199

[76] Khan, A., Komalo, B., Stam, J., Fitzmaurice, G., and Kurtenbach, G. (2005). Hov-

erCam: interactive 3D navigation for proximal object inspection. In Proceedings of the

2005 symposium on Interactive 3D graphics and games, I3D ’05, pages 73–80, Wash-

ington, District of Columbia. ACM.

[77] Kiyokawa, K., Takemura, H., and Yokoya, N. (1999). SeamlessDesign: a face-to-

face collaborative virtual/augmented environment for rapid prototyping of geometrically

constrained 3-D objects. In Proceedings IEEE International Conference on Multimedia

Computing and Systems, volume 2, pages 447–453. IEEE Comput. Soc.

[78] Klein, G. and Murray, D. W. (2010). Simulating low-cost cameras for augmented real-

ity compositing. IEEE transactions on visualization and computer graphics, 16(3):369–

80.

[79] Kruijff, E., Swan, J., and Feiner, S. (2010). Perceptual issues in augmented reality

revisited. In International Symposium on Mixed and Augmented Reality, pages 3 –12.

[80] Lee, C., Bonebrake, S., Bowman, D. A., and Hollerer, T. (2010). The role of latency

in the validity of AR simulation. In 2010 IEEE Virtual Reality Conference (VR), pages

11–18. IEEE.

[81] Lee, C., Rincon, G. A., Meyer, G., Höllerer, T., and Bowman, D. A. (2013). The

effects of visual realism on search tasks in mixed reality simulation. IEEE transactions

on visualization and computer graphics, 19(4):547–56.

[82] Leykin, A. and Tuceryan, M. (2004). Automatic Determination of Text Readability

over Textured Backgrounds for Augmented Reality Systems. VRCAI ’04, pages 224–230,

Singapore. IEEE Computer Society.

[83] Li, W., Agrawala, M., Curless, B., and Salesin, D. (2008a). Automated Generation

of Interactive 3D Exploded View Diagrams. ACM Transactions on Graphics (TOG) -

Proceedings of ACM SIGGRAPH 2008, 27(3).

[84] Li, W., Agrawala, M., and Salesin, D. (2004). Interactive Image-Based Exploded

View Diagrams. In Grapics Interface, pages 203–212.

[85] Li, W., Ritter, L., Agrawala, M., Curless, B., and Salesin, D. (2007). Interactive

cutaway illustrations of complex 3D models. ACM Transactions on Graphics, 26(3):31.



200

[86] Li, X., Wu, C., Zach, C., Lazebnik, S., and Frahm, J.-M. (2008b). Modeling and

Recognition of Landmark Image Collections Using Iconic Scene Graphs. In Computer

Vision - ECCV 2008, ECCV ’08, pages 427–440, Berlin, Heidelberg. Springer-Verlag.

[87] Maass, S. and Döllner, J. (2006). Dynamic Annotation of Interactive Environments

using Object-Integrated Billboards. In 14th International Conference in Central Europe

on Computer Graphics, Visualization and Computer Vision (WSCG), pages 327–334.

[88] Maass, S. and Döllner, J. (2008). Seamless integration of labels into interactive virtual

3D environments using parameterized hulls. In Proceedings of the Fourth Eurograph-

ics conference on Computational Aesthetics in Graphics, Visualization and Imaging,

Computational Aesthetics’08, pages 33–40, Aire-la-Ville, Switzerland, Switzerland. Eu-

rographics Association.

[89] MacQueen, J. (1967). Some methods for classification and analysis of multivariate ob-

servations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics

and Probability, Volume 1: Statistics. The Regents of the University of California.

[90] Madsen, J. B., Tatzgern, M., Kalkofen, D., Schmalstieg, D., and Madsen, C. B. (2015).

Evaluating Adaptive Labeling for Dynamic Handheld Augmented Reality. submitted.

[91] Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction to Information

Retrieval.

[92] Marks, J. and Shieber, S. (1991). The Computational Complexity of Cartographic

Label Placement. Technical report, Center for Research in Computing Technology,

Harvard University.

[93] Mendez, E., Kalkofen, D., Schmalstieg, D., and Méndez, E. (2006). Interactive

context-driven visualization tools for augmented reality. In Proceedings of the 5th

IEEE and ACM International Symposium on Mixed and Augmented Reality, ISMAR

’06, pages 209–218, Washington, DC, USA. IEEE Computer Society.

[94] Mijksenaar, P. and Westendorp, P. (1999). Open Here: The Art of Instructional

Design. Thames & Hudson.

[95] Milgram, P., Takemura, H., Utsumi, A., and Kishino, F. (1995). Augmented real-

ity: A class of displays on the reality-virtuality continuum. In Telemanipulator and

Telepresence Technologies, volume 2351, pages 282–292.



BIBLIOGRAPHY 201

[96] Mohring, M., Lessig, C., and Bimber, O. (2004). Video See-Through AR on Con-

sumer Cell-Phones. In Third IEEE and ACM International Symposium on Mixed and

Augmented Reality, pages 252–253. IEEE.

[97] Mulloni, A., Dünser, A., and Schmalstieg, D. (2010). Zooming interfaces for aug-

mented reality browsers. In Proceedings of the 12th international conference on Human

computer interaction with mobile devices and services - MobileHCI ’10, page 161, New

York, New York, USA. ACM Press.

[98] Mulloni, A., Seichter, H., Dünser, A., Baudisch, P., and Schmalstieg, D. (2012). 360Â◦

panoramic overviews for location-based services. In Proceedings of the 2012 ACM annual

conference on Human Factors in Computing Systems - CHI ’12, page 2565, New York,

New York, USA. ACM Press.

[99] Newcombe, R. and Andrew, J. (2010). Live Dense Reconstruction with a Single

Moving Camera. In IEEE Conference on Computer Vision and Pattern Recognition,

pages 1498–1505.

[100] Niederauer, C., Houston, M., Agrawala, M., and Humphreys, G. (2003). Non-

Invasive Interactive Visualization of Dynamic Architectural Environments. In Proceed-

ings of the 2003 symposium on Interactive 3D graphics, pages 55–58.

[101] Orlosky, J., Kiyokawa, K., and Takemura, H. (2013). Dynamic text management

for see-through wearable and heads-up display systems. In Proceedings of the 2013

international conference on Intelligent user interfaces - IUI ’13, IUI ’13, pages 363–370,

New York, NY, USA. ACM.

[102] Oulasvirta, A., Estlander, S., and Nurminen, A. (2008). Embodied interaction with

a 3D versus 2D mobile map. Personal and Ubiquitous Computing, 13(4):303–320.

[103] Pearl, J. (1984). Heuristics: intelligent search strategies for computer problem solv-

ing.

[104] Pick, S., Hentschel, B., Tedjo-Palczynski, I., Wolter, M., and Kuhlen, T. (2010).

Automated Positioning of Annotations in Immersive Virtual Environments. In EGVE

- JVRC’10 Proceedings of the 16th Eurographics conference on Virtual Environments

& Second Joint Virtual Reality, pages 1–8. The Eurographics Association.

[105] Pierce, J. S., Stearns, B. C., and Pausch, R. (1999). Voodoo dolls: seamless interac-

tion at multiple scales in virtual environments. In Proceedings of the 1999 symposium



202

on Interactive 3D graphics - SI3D ’99, pages 141–145, New York, New York, USA. ACM

Press.

[106] Raab, A. and Rüger, M. (1996). 3D-Zoom: Interactive Visualisation of Structures

and Relations in Complex Graphics. In B. Girod, H. N., editor, 3D Image Analysis and

Synthesis, pages 87–93. infix-Verlag.

[107] Resnick, P. and Varian, H. R. (1997). Recommender systems. Communications of

the ACM, 40(3):56–58.

[108] Rist, T., Krüger, A., Schneider, G., and Zimmermann, D. (1994). AWI: A Work-

bench for Semi-Automated Illustration Design. In Proceedings of the workshop on

Advanced visual interfaces, pages 59–68, New York, NY, USA. ACM Press.

[109] Robertson, C. M. and MacIntyre, B. (2007). An Evaluation of Graphical Context

as a Means for Ameliorating the Effects of Registration Error. In 6th IEEE and ACM

International Symposium on Mixed and Augmented Reality, pages 1–10. IEEE.

[110] Ropinski, T., Praß ni, J.-S., Roters, J., and Hinrichs, K. H. (2007). Internal Labels

as Shape Cues for Medical Illustration. In Proceedings of the 12th International Fall

Workshop on Vision, Modeling, and Visualization (VMV07), pages 203–212.

[111] Rosenholtz, R., Li, Y., Mansfield, J., and Jin, Z. (2005). Feature congestion: a

measure of display clutter. In Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems, pages 761–770, Portland, Oregon, USA. ACM.

[112] Rosten, E., Reitmayr, G., and Drummond, T. (2005). Advances in Visual Comput-

ing, volume 3804 of Lecture Notes in Computer Science. Springer Berlin Heidelberg,

Berlin, Heidelberg.

[113] Ruiz, M., Viola, I., Boada, I., Bruckner, S., Feixas, M., and Sbert, M. (2008).

Similarity-Based Exploded Views. In Proceedings of Smart Graphics, pages 154–165,

Berlin, Heidelberg. Springer-Verlag.

[114] Rusu, R. B. and Cousins, S. (2011). 3D is here: Point Cloud Library (PCL). In

IEEE International Conference on Robotics and Automation, pages 1–4. IEEE.

[115] Sandor, C., Dey, A., Cunningham, A., Barbier, S., Eck, U., Urquhart, D., Marner,

M. R., Jarvis, G., and Rhee, S. (2010). Egocentric space-distorting visualizations for



BIBLIOGRAPHY 203

rapid environment exploration in mobile mixed reality. In IEEE Virtual Reality Con-

ference (VR), pages 47–50. IEEE.

[116] Schulz, M., Reck, F., Bertelheimer, W., and Ertl, T. (1999). Interactive visual-

ization of fluid dynamics simulations in locally refined cartesian grids. In Proceedings

Visualization ’99 (Cat. No.99CB37067), pages 413–553. IEEE.

[117] Schwinger, W., Grün, C., Pröll, B., Retschitzegger, W., and Schauerhuber, A.

(2005). Context-Awareness in Mobile Tourism Guides - A Comprehensive Survey. Tech-

nical report, Johannes Kepler University Linz.

[118] Shibata, F., Nakamoto, H., Sasaki, R., Kimura, A., and Tamura, H. (2008). A view

management method for mobile mixed reality systems. In Proceedings of the 14th Eu-

rographics conference on Virtual Environments, pages 17–24. Eurographics Association.

[119] Shneiderman, B. (1996). The eyes have it: a task by data type taxonomy for in-

formation visualizations. In Visual Languages, 1996. Proceedings., IEEE . . . , pages

336–343. IEEE.

[120] Sokolov, D. and Plemenos, D. (2005). Viewpoint quality and scene understanding.

In Proceedings of the 6th International conference on Virtual Reality, Archaeology and

Intelligent Cultural Heritage, pages 67–73.

[121] Sonnet, H., Carpendale, S., and Strothotte, T. (2004). Integrating Expanding An-

notations with a 3D Explosion Probe. In Advanced Visual Interfaces, pages 63–70, New

York, NY, USA. ACM Press.

[122] Spence, R. (2007). Information Visualization - Design for Interaction. Pearson

Education Limited, 2nd edition.

[123] Stoakley, R., Conway, M. J., and Pausch, R. (1995). Virtual reality on a WIM. In

Proceedings of the SIGCHI conference on Human factors in computing systems - CHI

’95, pages 265–272, New York, New York, USA. ACM Press.

[124] Sukan, M., Feiner, S., Tversky, B., and Energin, S. (2012). Quick viewpoint switching

for manipulating virtual objects in hand-held augmented reality using stored snapshots.

In IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pages

217–226. IEEE.



204

[125] Sutherland, I. E. (1968). A head-mounted three dimensional display. In Proceedings

of the December 9-11, 1968, fall joint computer conference, part I on - AFIPS ’68 (Fall,

part I), pages 757–764, New York, New York, USA. ACM Press.

[126] Tatzgern, M., Grasset, R., Veas, E., Kalkofen, D., Seichter, H., and Schmalstieg,

D. (2013a). Exploring Distant Objects with Augmented Reality. In Proceedings of the

Joint Virtual Reality Conference of EGVE - EuroVR, pages 49–56. The Eurographics

Association.

[127] Tatzgern, M., Grasset, R., Veas, E., Kalkofen, D., Seichter, H., and Schmalstieg, D.

(2014a). Exploring Real World Points of Interest: Design and Evaluation of Object-

centric Exploration Techniques for Augmented Reality. Pervasive Mobile Computing:

Special Issue on Mobile and Pervasive Applications in Tourism.

[128] Tatzgern, M., Kalkofen, D., Grasset, R., and Schmalstieg, D. (2011a). Embedded

Virtual Views for Augmented Reality Navigation. In International Symposium on Mixed

and Augmented Reality - Workshop on Visualization in Mixed Reality Environments.

[129] Tatzgern, M., Kalkofen, D., Grasset, R., and Schmalstieg, D. (2014b). Hedgehog

Labeling: View Management Techniques for External Labels in 3D Space. In IEEE

Virtual Reality.

[130] Tatzgern, M., Kalkofen, D., Grasset, R., and Schmalstieg, D. (2014c). Transitional

Augmented Reality Navigation for Live Captured Scenes. In IEEE Virtual Reality.

[131] Tatzgern, M., Kalkofen, D., and Schmalstieg, D. (2010). Compact explosion di-

agrams. In Proceedings of the 8th International Symposium on Non-Photorealistic

Animation and Rendering, volume 35, pages 17–26, New York, New York, USA. ACM

Press.

[132] Tatzgern, M., Kalkofen, D., and Schmalstieg, D. (2011b). Multi-perspective compact

explosion diagrams. Computers & Graphics, 35(1):135–147.

[133] Tatzgern, M., Kalkofen, D., and Schmalstieg, D. (2013b). Dynamic compact visual-

izations for augmented reality. In IEEE Virtual Reality (VR), pages 3–6. IEEE.

[134] Tatzgern, M., Orso, V., Kalkofen, D., Jacucci, G., and Gamberini, Luciano Schmal-

stieg, D. (2015). Adaptive Information Density for Augmented Reality Displays. sub-

mitted.



BIBLIOGRAPHY 205

[135] Thomas, B., Demczuk, V., Piekarski, W., Hepworth, D., and Gunther, B. (1998).

A wearable computer system with augmented reality to support terrestrial navigation.

In Digest of Papers. Second International Symposium on Wearable Computers, pages

168–171. IEEE Comput. Soc.

[136] Trapp, M., Beesk, C., Pasewaldt, S., and Jürgen, D. (2011). Interactive Rendering

Techniques for Highlighting in 3D Geovirtual Environments. In Advances in 3D Geo-

Information Sciences, pages 197–210. Springer Berlin Heidelberg.

[137] Veas, E., Grasset, R., Ferencik, I., Grünewald, T., and Schmalstieg, D. (2012). Mo-

bile augmented reality for environmental monitoring. Personal and Ubiquitous Com-

puting, 17(7):1515–1531.

[138] Veas, E., Mulloni, A., Kruijff, E., Regenbrecht, H., and Schmalstieg, D. (2010).

Techniques for view transition in multi-camera outdoor environments. In Proceedings

of Graphics Interface, GI ’10, pages 193–200, Toronto, Ont., Canada, Canada. Canadian

Information Processing Society.

[139] Virrantaus, K., Markkula, J., Garmash, A., Terziyan, V., Veijalainen, J., Katanosov,

A., and Tirri, H. (2001). Developing GIS-supported location-based services. In Proceed-

ings of the Second International Conference on Web Information Systems Engineering,

volume 2, pages 66–75. IEEE Comput. Soc.

[140] Vranic, D. (2005). DESIRE: a composite 3D-shape descriptor. In International

Conference on Multimedia and Expo (ICME), page 4 pp.

[141] Wagner, D., Mulloni, A., Langlotz, T., and Schmalstieg, D. (2010). Real-time

panoramic mapping and tracking on mobile phones. In 2010 IEEE Virtual Reality

Conference (VR), pages 211–218. IEEE.

[142] Wagner, D. and Schmalstieg, D. (2003). First steps towards handheld augmented

reality. In Seventh IEEE International Symposium on Wearable Computers, 2003.

Proceedings., pages 127–135. IEEE.

[143] Ward, M. O. (2002). A taxonomy of glyph placement strategies for multidimensional

data visualization. Information Visualization, 1(3/4):194–210.

[144] Wertheim, A. H., Hooge, I. T. C., Krikke, K., and Johnson, A. (2006). How impor-

tant is lateral masking in visual search? Experimental brain research, 170(3):387–402.



206

[145] White, S. (2009). Interaction and Presentation Techniques for Situated Visualiza-

tion. PhD thesis, Columbia University.

[146] White, S. and Feiner, S. (2009). SiteLens: situated visualization techniques for urban

site visits. In Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, CHI ’09, pages 1117–1120, New York, NY, USA. ACM.

[147] Wilson, R. H. (1992). On Geometric Assembly Planning. PhD thesis, Stanford

University, Stanford, California.

[148] Wither, J., Coffin, C., Ventura, J., and Hollerer, T. (2008). Fast annotation and

modeling with a single-point laser range finder. In 7th IEEE and ACM International

Symposium on Mixed and Augmented Reality, pages 65–68. IEEE.

[149] Wolfe, J. M. (1998). What Can 1 Million Trials Tell Us About Visual Search?

Psychological Science, 9(1):33–39.

[150] Woodruff, A., Landay, J., and Stonebraker, M. (1998). Constant density visual-

izations of non-uniform distributions of data. In Annual ACM Symposium on User

Interface Software and Technology (UIST), UIST ’98, pages 19–28, New York, NY,

USA. ACM.

[151] Yan, X. and Jiawei Han (2002). gSpan: graph-based substructure pattern mining.

In IEEE International Conference on Data Mining, pages 721–724. IEEE Comput. Soc.

[152] Zhu, Y. (2007). Measuring Effective Data Visualization. In Advances in Visual

Computing, pages 652–661.

[153] Zollmann, S., Kalkofen, D., Hoppe, C., Kluckner, S., Bischof, H., and Reitmayr,

G. (2012). Interactive 4D overview and detail visualization in augmented reality. In

2012 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pages

167–176. IEEE.


	Introduction
	Augmented Reality
	Visualization
	Situated Visualization
	Challenges
	Visualization Challenges
	Challenges of Augmented Reality

	Contributions
	Combining Filtering and View Management
	Temporally Coherent View Management
	Extending the Ego-centric Viewpoint

	Publications

	Background
	Visual Clutter
	Reducing Data Overload
	Filtering
	Clustering

	View Management and Temporal Coherence
	Annotations
	Explosion Diagrams

	Combining Data Selection and View Management
	Extending the Ego-centric Viewpoint
	Transitional Interfaces
	Multi-perspective Rendering


	Combining Filtering and View Management
	Compact Visualizations
	General Framework
	Clustering Redundant Data
	Layout Creation

	Compact Annotations
	Compact Photo Collections
	Compact Explosion Diagrams
	System Overview
	Clustering Redundant Assembly Groups
	Layout Initialization
	Layout Optimization

	Combined Optimization of Data Types
	AR Challenges
	Interactive Framerates
	Minimizing Layout Dimensions
	Scene-Aware View Management


	Hierarchies in View Management
	Adaptive Information Density of Annotations
	Hierarchical clustering
	Optimal label selection
	Glyph Design
	Interacting with Clusters
	Evaluation: Comparing to Filter Interface
	Evaluation: Different Degrees of Clustering

	Hierarchies in Compact Visualizations
	Two-Level Compact Photo-Collections
	Explosion Diagrams


	Conclusion and Future Work

	Temporally Coherent View Management
	Compact Visualization: Optimizing for Temporal Coherence
	Minimally different neighbors
	Minimize potential distractions

	Hedgehog Labeling: Stable Annotations in Object-space
	Layout Initialization
	Layout Updates
	Implementation
	Comparison of Variations

	Evaluating Coherence in View Management
	View Management Algorithms
	Continuous Updates
	Discrete Updates

	Evaluation: Update Approach and Spatial Representation
	Evaluation: 3D Continuous and Discrete
	Discussion

	Conclusion and Future Work

	Extending the Ego-centric Viewpoint
	Object-centric Exploration Techniques
	Design Space
	Interface Design
	Evaluation: Abstract Scenarios
	Evaluation Testbed
	Experimental Design
	First Study: Varying Copy and Cues
	Second Study: Varying Spatial Separation

	Evaluation: Real-World Scenario
	Pilot study: Real-world Setting
	Experimental Design
	Results
	Discussion

	Design Recommendations

	Smart Transitions using Scene Semantics
	Interface Design
	System Overview
	Capturing Scene Semantics
	Context-Aware Transitions
	Intermediate Transitions

	Multi-perspective Rendering
	Secondary Viewpoints of Objects
	Embedded Views in Real World Environments.

	Conclusion and Future Work

	Conclusion
	Summary
	Final Remarks

	Acronyms
	Bibliography

