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Figure 1: After placing physical objects on a table, our system offers the possibility to structurally navigate an unprepared scene with a set of
new transitional navigation techniques in AR (Left) and VR (Right) modes. The techniques seamlessly switch from AR to VR modes.

ABSTRACT

Augmented Reality (AR) applications require knowledge about the
real world environment in which they are used. This knowledge is
often gathered while developing the AR application and stored for
future uses of the application. Consequently, changes to the real
world lead to a mismatch between the previously recorded data and
the real world. New capturing techniques based on dense Simul-
taneous Localization and Mapping (SLAM) not only allow users
to capture real world scenes at run-time, but also enables them to
capture changes of the world. However, instead of using previously
recorded and prepared scenes, users must interact with an unpre-
pared environment. In this paper, we present a set of new interaction
techniques that support users in handling captured real world envi-
ronments. The techniques present virtual viewpoints of the scene
based on a scene analysis and provide natural transitions between
the AR view and virtual viewpoints. We demonstrate our approach
with a SLAM based prototype that allows us to capture a real world
scene and describe example applications of our system.

Index Terms: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Artificial, augmented, and vir-
tual realities; H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Interaction styles
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1 INTRODUCTION

Augmented Reality (AR) applications traditionally rely on prede-
fined, rigidly modeled content that only applies to those conditions
of the real world that were present when the application was devel-
oped. Hence, often an AR application can be deployed only in a
single physical location, which limits its flexibility. This problem is
aggravated when changes in the environment cause misalignments
between the previously recorded data and the real world. Such a
situation can impair the correct functioning of the application.

Fortunately, there has been tremendous progress in the area of
real-time Simultaneous Localization and Mapping (SLAM) [12].
SLAM enables users to use AR in unprepared and unknown envi-
ronments and allows them to capture the geometry and the visual
appearance of the environment. Furthermore, changes to the real
world scene can be captured and AR applications can react to these
changes. This allows users to engage into AR applications any-
where and at anytime. However, real world scenes are not modeled
beforehand anymore, and users need to interact with and manipu-
late unprepared environments that are unknown to the application.

In this paper, we combine rapid scene acquisition and extraction
of basic semantic information from the captured scene with new
transitional interface techniques that allow users to navigate and
manipulate unknown real world environments. We complement the
AR view with Virtual Reality (VR) views of the captured environ-
ment, which allows users to quickly switch between different views
of the scene. This has been shown to facilitate AR interaction [15].

Our techniques provide natural transitions between AR and VR
viewpoints and strategically place the virtual camera in locations
that are better suited for the current task of the user. For this pur-
pose, we analyze the captured scene and extract semantic informa-
tion to determine the virtual camera viewpoint. We demonstrate our



approach with a SLAM-based prototype that allows us to capture a
real world scene. However, the presented techniques can be used
independently of the real-time capture system and can be extended
by more sophisticated semantic information.

2 RELATED WORK

Different approaches have been proposed, which complement the
traditional egocentric viewpoint of AR. For example, Lee et al. [9]
propose automatic zooming based on distance to the target. Other
work [5, 10] implements a pause mode in AR that basically resem-
bles a static VR mode. Hoang et al. [6] zoom distant objects by
showing a second AR view of a remote camera in a window.

Other approaches allow the user to use both an egocentric AR
view and VR view of the world. Höllerer et al. [7] combine the
AR view through a head-mounted display with a handheld mobile
computer that shows a virtual model of the environment. Similarly,
Pierkaski et al. [14] allow users to switch between an egocentric AR
view and a VR exocentric view. These approaches switch abruptly
and do not provide transitions between AR and VR viewpoints.

Billinghurst et al. [1] introduce the concept of transitional user
interfaces, where a user can seamlessly switch between an AR view
and a VR view. They also present steering techniques for navigation
in VR. Grasset et al. [3] evaluate collaborative transitional user in-
terfaces and visual cues. Grubert et al. [4] allow users to take away
content from a real world poster to explore multimedia content of-
fline, but they do not consider 3D interaction. Tatzgern et al. [16]
present a transitional AR interface which allows users to explore
distant real world buildings using a virtual 3D copy metaphor. All
of this work only considers environments that have been prepared
beforehand. Furthermore, the interfaces do not allow the user much
control over the target viewpoint of the transition.

Mulloni et al. [11] propose two interfaces for changing between
egocentric AR and exocentric VR view in a mobile context: zoom-
ing out to a top-down 2D view and zooming out to a panoramic
overview of the surroundings. However, the virtual views are bound
to the user’s location and can not be changed freely. Veas et al. [17]
transition between remote static viewpoints in an outdoor AR sce-
nario. Their work focuses on switching between a discrete set of
cameras, which have been installed in a real environment. Simi-
larly, Sukan et al. [15] propose an interface to transition from the
current AR view to previously captured discrete viewpoints show-
ing a recorded AR view. However, in contrast to our approach,
their interface does not allow the user to reach physically impos-
sible viewpoints, because the user must capture the viewpoints by
reaching them at least once. Furthermore, both Veas et al. and
Sukan et al. allow the user to switch between discrete viewpoints,
and the techniques do not use scene geometry captured at run-time.

3 SYSTEM OVERVIEW

Our system consists of four components: capturing a real world
scene, analysis of the scene, retrieving knowledge about the user’s
task and camera navigation that fuses these components to create
viewpoint transitions. Figure 2 provides a schematic overview of
the components and their relation to the traditional AR pipeline.

In a traditional AR pipeline, the tracking component controls
the viewpoint of the rendering. We expand this pipeline with our
scene navigation component, which seamlessly switches between
live tracking and virtual camera viewpoints. This component also
selects camera manipulators to allow changes of the virtual view-
points. The navigation component strategically selects viewpoint
and manipulator based on the knowledge about the user’s task and
knowledge about the scene. In our system, we gather scene knowl-
edge automatically by analyzing a virtual representation of the
scene, which we capture and reconstruct at run-time. The update
frequency of the capturing process can be adjusted to the recon-
struction algorithm and its computational demands. The navigation

runs in real-time and operates independently of the capturing.
In the following, we present the details of three components:

scene capture, scene analysis and scene navigation. The task knowl-
edge component depends on the application scenario (authoring,
games, etc.). We do not discuss this component in detail.

Figure 2: Overview. In a traditional AR pipeline (dashed line) the
tracking system controls the viewpoint of the rendering. We expand
this pipeline by a scene navigation component, which allows to switch
from AR to VR views and chooses viewpoints based on scene and
task knowledge. We gather scene knowledge from analyzing a scene
captured at run-time, e.g. by using a SLAM system.

4 CAPTURING THE SCENE

Virtual representations of real world scenes can be captured in real-
time using SLAM technology [12]. The combination of SLAM
with depth sensors, (e.g., KinectFusion [12]) allows live captur-
ing of detailed models, either as volumes, depth images or polygon
meshes. Figure 3(b) shows the output of an open source KinectFu-
sion implementation1 applied to the scene shown in Figure 3(a).

Models can be constructed with monocular SLAM technology,
stereo SLAM, or depth sensors. Alternatively, models can also be
reconstructed using an online reconstruction service. While captur-
ing the scene, the data is processed in the cloud and sent back to the
user. For example, we created the model in Figure 3(c) by using a
freely available online reconstruction service2.

In our prototype system, we create a mesh approximation of the
volume generated by an open source KinectFusion implementation.
We reduce the number of voxels by using a grid filter that calculates
the centroid of voxels within a cube having a side length of 1cm.
Then, we use a poisson mesh algorithm [8] using the filtered points
to create the mesh representation. We chose the tree depth used for
the poisson reconstruction to find a trade off between reconstruction
performance and accuracy of the created geometry. A tree depth of
six allows for more frequent mesh updates, but the details of the
geometry are smoothed. However, the general shape of the object
is approximated well. A tree depth of seven creates a good approxi-
mation of the objects at the cost of a lower update frequency. In our
system, we allow the user to switch at runtime between these set-
tings. Hence, a user may choose faster updates, when the real world
scene is rearranged frequently, or a better mesh approximation with
higher visual quality after the scene was arranged.

We create a separate thread for the meshing process to avoid
a performance impact on the rendering thread. In our prototype
system, a tree depth of seven took around eight seconds to recon-
struct, while a depth of six took only around two seconds for a point
cloud containing 25k points after filtering. This size corresponds
to a complete scan of the scene. We deployed the prototype on a
PC running Windows 7, equipped with an Intel i7 CPU quad-core
2.66GHz, 12 GB RAM and an Nvidia 780GTX graphics board.

To compensate for visible reconstruction inaccuracies, we use
an image-based rendering (IBR) method to provide view dependent
updates of the virtual representation (Figure 3(d)). This also im-
proves visual fidelity and the visual similarity between a physical

1http://pointclouds.org
2http://www.123dapp.com/catch
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Figure 3: Scene Representation. Our system works independently of the scene capturing technology or rendering representation. The real scene
shown in (a) can be reconstructed and rendered using different methods, such as (b) rendering colored voxels of a volumetric representation
generated with KinectFusion, (c) rendering a polygonal mesh of a reconstruction or (d) image based rendering of a reconstructed proxy mesh.

(a) (b)

Figure 4: Reconstruction Feedback and Guidance. (a) We overlay
the point cloud from the KinectFusion tracker in real-time to provide
reconstruction feedback. (b) To support the user during scene cap-
turing, we visualize viewpoints that have not yet been visited by ren-
dering arrows around the objects segmented by the scene analysis.

view of the scene (AR) and a virtual view of the scene (VR). Note
the similarity of the IBR in Figure 1(Right) with the real world
scene shown in Figure 1(Left). We record the images used for the
IBR during the capturing process by sampling images at points that
are located on a regular grid in 3D space. For each point we store a
number of images with viewing directions offset by 45◦. To be able
to react to changes to the scene, we implemented a simple image ag-
ing algorithm, which expires stored images after a certain amount
of time. Alternatively, images can also expire when the geometry
shown in the image changes.

We also provide reconstruction feedback to the user by render-
ing the currently reconstructed point cloud in AR (Figure 4(a)). In
contrast to the mesh representation, this visualization is updated al-
most instantaneously. Furthermore, the system can guide the user
around objects in the scene to ensure that all sides of an object have
been viewed with the camera (Figure 4(b)). Arrows around the ob-
ject guide the user to viewpoints that have not been visited before.
Arrows are removed when the viewpoint has been visited. To en-
able this feature, we use automatic scene segmentation, which is
discussed in the next section.

5 ANALYZING THE SCENE

Common camera controls, such as used in 3D games, rely on se-
mantic knowledge about the scene to define camera manipulation
and possible camera viewpoints. In a dynamically captured scene,
this information is initially not present. Therefore, we extract se-
mantics from the captured scene based on the reconstructed mesh.

Niederauer et al. [13] show how to generate semantic informa-
tion from a 3D mesh. Additionally, the semantic information can
be derived from others sources such as object recognition from cap-
tured video data [2]. Sensors in mobile devices facilitate the anal-

Figure 5: Scene Segmentation. We automatically segment the scene
to identify the ground plane defining the world coordinate system and
single objects on the ground plane. We use this knowledge to control
the viewpoints of transitions. Colors represent the segmented object.

ysis by providing information about gravity or compass reading,
which allows to identify a ground plane or a specific direction.

We need scene information for controlling the camera, but also
for the transition between different AR and VR views. Depend-
ing on the user’s current task, selecting a particular object can trig-
ger a different viewpoint change. For instance, when selecting the
ground plane during authoring, the virtual viewpoint might transi-
tion to a top-down view to allow the user to arrange virtual objects
on the ground plane. However, during a game session, the camera
may transition to a ego-perspective on the ground level.

In this paper, we focus on tabletop scenarios (e.g., Figure 3(a)).
We identify the plane corresponding to the table and the single
objects on the table by segmenting the reconstructed point cloud.
The plane is identified using a sample consensus method that fits a
plane model. After removing the plane points from the point cloud,
we identify point clusters based on Euclidean point distances. Us-
ing this simple segmentation, the system is now able to differenti-
ate between the ground plane and single scene objects (Figure 5).
Additional information can be added to the analysis using domain
knowledge. Because our example scene consists of houses, we can
identify walls and roofs of the houses, either geometrically or by
defining every point lying above a certain height to be a roof.

Aside from having knowledge about the objects in the scene, we
also use the mesh normals to control the camera orientation. For
instance, the plane normal defines the up vector of the world so that
virtual geometry and virtual cameras can be placed with correct up
orientation. We also use the normals of the convex hulls of objects
to orient cameras towards the geometry. We use the normals of their
convex hull to achieve a more homogenous normal distribution.



Figure 6: Spatial Cues. We provide spatial cues to facilitate orienting
in the VR view. (a) A camera icon shows the pose of the AR view,
that is still tracked when the user switches to the VR view. (b) The
viewport of the AR view is also projected into the scene. (c) The user
can optionally activate a small window showing the current AR view.

6 TRANSITIONAL NAVIGATION TECHNIQUES

We present four navigation techniques that can be used for dynamic
scenes. Each technique allows a seamless transition between the
AR view and VR view of the captured scene. We classify our tech-
niques into two categories: context-aware transitions that use the
knowledge gathered from the scene analysis and intermediate tran-
sitions that provide VR views but are still connected to the AR view.

The user can switch between AR and VR views at any time using
one of the presented techniques. To quickly move from VR back to
AR, we provide a home button located in the bottom left of the view.
We provide spatial cues in the VR view to communicate the current
position of the tracked AR camera and thus the position of the user
relative to the virtual model. We visualize the tracked camera po-
sition in VR by rendering a camera frustum (Figure 6(a)). We also
visualize the viewing direction of the tracked camera by projecting
the borders of its viewport onto the scene geometry (Figure 6(b)).
Furthermore, we allow the user to open an AR window inset in
the VR view, which shows the AR view of the scene (Figure 6(c)).
This also allows a user to see changes that were performed in the
VR view in the current AR view without switching back to AR.

To demonstrate our techniques, we use the scene shown in Fig-
ure 3(a) and render the virtual scene using IBR. Semantic input is
provided by classifying the scene into ground, object and top.

6.1 Context Aware Transitions
Context aware transitions make use of the data gathered from the
scene analysis to control the viewpoint of the virtual camera.

Transitional Camera Control. The context aware transitional
camera control changes from the AR view to an automatically cal-
culated virtual viewpoint. The location of this viewpoint is deter-
mined by taking the semantic knowledge of the scene and the cur-
rent task into account. To trigger the transition to the calculated
viewpoint, a user can tap on any element of the scene. After reach-
ing the viewpoint, the user can navigate the virtual scene with the
provided camera manipulator. To provide feedback about the possi-
ble target viewpoints, we display icons representing the calculated
viewpoints for these locations. These visual icons are activated by
dragging the finger over the scene using a hover or swipe gesture.

The results for our test scene are shown in Figure 7. For the
viewpoint calculation, we assume an authoring task using the re-
constructed scene. Hence, the semantics are interpreted to reflect
that task. When the user taps on the ground, the system switches
to a map like top-down view and a panning camera manipulator.
When the user taps on the top of an object, we provide a top-down
view, but this time closer to the object. In both cases, the normal

Figure 7: Context Aware Transitional Camera Control. Our system
chooses different navigation modes and viewpoints in function of an
area selected by a user. (Left) Visual icons define which semantic
modes are available. By tapping on a visual icon, semantic navi-
gation modes are triggered, such as (Top) top-down regional view,
(Middle) front view of an object or (Bottom) top view of the object.

Figure 8: Context Aware Transitional Interaction. Authoring and ma-
nipulating 3D content requires constant camera manoeuvring for ac-
complishing the task. (Left) The user in the AR mode cannot continue
the drawing task behind the trees because of limited visibility. (Right)
Our technique allows the user to switch to a more adequate viewpoint
without stopping the interaction.

of the ground plane is used to orient the camera to look from top
down. When the user clicks on the surface of an object, we auto-
matically provide a close-up viewpoint, which uses the normal of
the ground plane as up vector and is oriented towards the geometry



Figure 9: Transitional Zooming. (Top) To achieve a close-up view of a real model, a user can directly zoom in an AR view. (Bottom) A user can
also zoom out of the AR view to get an overview of the scene. When zooming, the view gradually fades to the VR view when a certain distance
threshold is reached. We use a virtual grid as a visual feedback to notify the user that the switch from AR to VR is imminent.

using the normal of its convex hull. In the close-up view, we switch
to an orbit manipulator to rotate around the object. Once in VR, the
user is free to choose other viewpoints.

Transitional Interaction. A context aware transitional interac-
tion can be used to complement interactions that were started in the
AR view. The user can indicate that an interaction that was started
in AR should be continued in VR by pressing on the same loca-
tion on the screen, without releasing it. The system then seamlessly
switches to a viewpoint that is most appropriate for the current task.
Hence, the interaction of the user is not interrupted by performing
a gesture to switch to VR.

In Figure 8, the user starts drawing a path in AR and cannot
continue drawing, because the view is blocked by scene geome-
try. By stopping and holding the interaction at the end of the path,
the system recognizes the user’s intention to continue drawing and
switches to a virtual viewpoint. The viewpoint is top-down, be-
cause it is best suited for the task and scene semantics. The user
can continue drawing in VR and pan the camera over the scene to
extend the path in areas not reachable from the AR view.

6.2 Intermediate Transitions

Intermediate transitions switch to a VR view, but are still loosely
connected to AR. From an intermediate transition, a user can al-
ways use a context aware transition to continue navigating in VR.

Zooming. When showing AR applications on mobile phones,
we noticed that users regularly tried to zoom into the AR view to
look at details of the real world scene or the augmentation. A naive
implementation might digitally zoom the video image and adjust
the augmentations accordingly. However, at higher zoom levels the
quality of the video image degrades. To avoid this decrease in qual-
ity, we developed a transitional zooming technique that gradually
replaces the video with the virtual representation, as the user zooms
in on the model. The virtual geometry is able to provide more de-
tailed close-up views than simple digital zooming (Figure 10). The
virtual geometry also allows users to zoom out of the AR view to

(a) (b)

Figure 10: Scene Zooming Methods. (a) A pure digital zoom causes
artifacts in the video image. (b) We zoom into a virtual representa-
tion, which provides close-up views with higher resolution.

get an overview of the scene from a larger distance. While being
in a zoomed view, the system continues tracking as in the AR view.
We use the tracked camera pose to directly control the viewpoint of
the virtual camera so that the user can naturally explore the scene
by moving the mobile device in the real world reference frame.

The zooming is situated in the continuum between the AR view
and the VR view. When zooming, we gradually blend to the other
view mode when a certain threshold is reached. We indicate this
threshold by adding a fading virtual grid before starting to blend
to the other view mode. When virtual objects are closer than
the blending threshold, we switch to the virtual model before this
threshold to avoid zooming through this object. Zooming can be
controlled with a swipe gesture, or on a touch screen with a pinch
gesture. The steps of the technique are shown in Figure 9.

Spring Loaded Navigation. The context aware transitional
techniques allow a user to quickly navigate to virtual viewpoints
of those parts of the scene that are visible from the current view-
point. To investigate the occluded areas, the user either must change
the physical AR viewpoint or manipulate the virtual camera after



Figure 11: Spring Loaded Navigation. A user may want to switch
to areas that are not visible from the current AR view. We provide
a spring loaded navigation technique that allows a user to rotate
around an object directly from the AR view. When the user stops
interacting the technique switches back to AR.

switching to a VR viewpoint. To avoid these detours, we introduce
a spring loaded navigation technique that enables users to quickly
change to a virtual viewpoint of the occluded areas (Figure 11).

The spring loaded navigation allows the user to investigate invis-
ible areas by rotating the virtual model, while still being in the AR
view. To activate the spring loaded navigation, the user taps and
holds a location on the screen, which triggers a transition to the VR
view. The user can then drag the view to initiate a rotation around
the pressed region. To be able to rotate around an object, we allow
users to interrupt the dragging to reposition the input. When the
user does not interact with the screen for a certain amount of time,
the viewpoint transitions back to the current AR view.

7 CONCLUSION AND FUTURE WORK

Real time capturing techniques allow a user to create representa-
tions of the real world environment. In this work, we presented
transitional navigation techniques, which make use of the captured
scene to provide virtual viewpoints. By extracting semantic infor-
mation from the scene, we are able to provide seamless transitions
from AR to strategically chosen VR viewpoints, which are relevant
for the current task of the user.

(a) (b)

Figure 12: Example Urban Planning. (a) In an urban planning ap-
plication users rearrange the scene to identify a good space design.
(b) Using our system, users can achieve egocentric viewpoints of the
scene and visit views that would otherwise be unreachable.

Our system enables a wide variety of new application scenarios
in AR, such as more immersive AR games. A user can switch to an
egocentric view of the game, or follow virtual characters that oth-
erwise would disappear behind geometry. Furthermore, new game
designs can make use of a combination of AR and VR views and
the transitions between them. Other application areas are architec-
ture and urban planning. Users can not only manipulate the scene

using tangible objects, but also switch to a virtual view showing
the planned areas from an egocentric virtual viewpoint. This al-
lows users to verify the placement of buildings and detect unde-
sired occlusions from certain viewpoints. As shown in Figure12(a),
users might rearrange the trees in the architectural model of a pub-
lic space to determine a good placement for enhancing the appeal
of the space. Using our techniques, they can verify the result from
an egocentric perspective. They can also move to viewpoints oth-
erwise blocked by the real environment. In Figure 12(b), the user
switched to the top of the roof looking down the alley from the di-
rection opposite to the AR view, a viewpoint that would be blocked
by the table. In future work, we will evaluate this type of techniques
in the context of gaming and urban planning.
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