
Explosion Diagrams in Augmented Reality
Denis Kalkofen∗

Graz University of Technology
Institute for Computer Graphics

and Vision

Markus Tatzgern†

Graz University of Technology
Institute for Computer Graphics

and Vision

Dieter Schmalstieg‡

Graz University of Technology
Institute for Computer Graphics

and Vision

ABSTRACT

This article introduces explosion diagrams to Augmented Reality
(AR) applications. It presents algorithms to seamlessly integrate an
object’s explosion diagram into a real world environment, includ-
ing the AR rendering of relocated objects textured with live video
and the restoration of visual information which are hidden behind
relocated objects. It demonstrates several types of visualizations for
convincing AR explosion diagrams and it discusses visualizations
of exploded parts as well as visual links conveying their relocation
direction. Furthermore, we show the integration of our rendering
and visualization techniques in an AR framework, which is able to
automatically compute a diagram’s layout and an animation of its
corresponding explosion.

Keywords: Object overlay and spatial layout techniques, real-
time rendering, mediated and diminished reality.

Index Terms: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Artificial, augmented, and vir-
tual realities E.1 [Data Structures]: Graphs and Networks I.3.6
[Computer Graphics]: Methodology and Techniques—Graphics
data structures and data types

1 INTRODUCTION

Augmented Reality (AR) often draws its power from its ability to
seemingly suspend physical laws of light propagation in real world
environments. For example, AR can reveal hidden structures by
so called x-ray visualization, i. e., by rendering virtual representa-
tions of hidden objects registered in three-dimensional real space.
However, overriding real world imagery with virtual objects can
hide important information in the original image which may lead
to ambiguous depth perception. For example, the simple overlay of
a hidden object used in Figure 2 makes it difficult to estimate the
distance between the car’s engine and its front lid.

1.1 X-ray visualizations and their limitations
To correctly communicate spatial arrangements, x-ray visualiza-
tions have to take into account the information which is about to
be occluded by the overlaid virtual objects. Recent work on visu-
alizations for AR [12]. shows how the presentation of contextual
information is able to support the comprehension of x-ray images.
Two types of visualization techniques have been proposed in AR
literature so far: cutaways [20] are artificial cavities in an occluder,
while ghostings [12] use sparse representations of the occluding
structures to allow to see inside or behind.

Both techniques preserve depth cues by retaining some portion
of the occluding structure as contextual information, and only work
efficiently for suitable occluders. For example, cutaway visualiza-
tions require that the occluding object is large enough in screen

∗e-mail: kalkofen@icg.tugraz.at
†e-mail: tatzgern@icg.tugraz.at
‡e-mail: schmalstieg@icg.tugraz.at

Figure 1: Explosion Diagram in Augmented Reality. Real world in-
formation is displaced using synchronized dual phantom rendering. Ex-
ploded parts are visually unified using either pure virtual or real world
combined with restored real information. A halo outline discriminates
the parts from background information and their connection lines are
embedded in a motion blur effect resulting from their explosion.

space to contain the virtual cavity. Ghostings require the presence
of appropriate surface features, which can be extracted to yield the
desired sparse representation. Too few or too many features are
both detrimental as they lead to either empty or cluttered displays.
Introducing artificial surface features, for example based on tex-
tures such as suggested by [13], is not applicable in AR where real
world object textures are already present and must be preserved if
possible.

Even more problematic is the fact that both ghosting and cutaway
renderings remove potentially important information from the oc-
cluding objects. Kalkofen et. al. [11] show how important context
information can be preserved in a ghost visualization. However, in
densely cluttered, complex scenes, where several important focus
and context objects must be shown, attempting to visualize all rele-
vant objects in a very small space, satisfactory results may still not
be yield.

1.2 Advantages and disadvantages of explosion dia-
grams

As a remedy, we suggest to use explosion diagrams in AR (Fig-
ure 1). Explosion diagrams are traditionally used in technical il-
lustrations to present the assembly of an object. Unlike cutaway
or ghost visualizations, they avoid the trade-off between retaining
occluders and uncovering hidden structures. Instead, objects are
displaced and presented using an arrangement that makes it possi-
ble to mentally reassemble the object. Explosion diagrams there-
fore maximize the amount of relevant visual information, while the
communication of spatial arrangements is still well supported.

71

IEEE Virtual Reality 2009
14-18 March, Lafayette, Louisiana, USA
978-1-4244-3812-9/09/$25.00 ©2009 IEEE

Figure 2: X-ray vision. Simple overlay of hidden structure

The key element of traditional explosion diagrams is their lay-
out, showing the exploded parts relative to each other. This spatial
arrangement encodes the relationships of the parts, so that the ob-
server can mentally reassemble the exploded object. However, ex-
plosion diagrams in AR must respect the relationship of virtual and
real components of the scene, and therefore require special render-
ing and visualization techniques. Specifically, we must deal with
the problem of convincingly relocating real world objects and fill
the resulting empty spaces with equally convincing virtual infor-
mation.

Furthermore, traditional illustrations usually present the explo-
sion diagram in front of a uniformly colored background. In con-
trast, AR displays must take into account the real world (video)
background and ensure that all components of the explosion dia-
gram (the relocated objects and the visual links between parts that
convey their assembly sequence) stand out from the background in
a clear and unambiguous way. As an example, consider how diffi-
cult it is to see a single colored dashed line Figure 5(e).

1.3 Contribution
In this paper, we address the task of integrating explosion diagrams
in an AR environment. We present algorithms to compose an im-
age from exploded real world information, non-exploded real world
information and virtual objects (section 3). We demonstrate the
restoration of missing hidden information in cases where the AR
visualization suffers from a deficiency of information after relocat-
ing real world imagery. To support the comprehension of an AR
explosion diagram, we discuss different types of visualization tech-
niques of the parts of a diagram as well as how to visually link them
(section 4). We integrate our rendering and visualization techniques
in an AR framework, which is able to automatically compute task
dependent layout and animation of the explosion diagrams (section
5).

2 RELATED WORK

Explosion diagrams can be found in may different media, ranging
from illustrations in books to interactive scientific visualizations of
volumetric data. Most of them are used to support the understand-
ing of an exploded object. For example, Ritter et al. [18] present
a 3D puzzle, which helps the user learning spatial relationships of
the parts of an object. They create an ’in-place’ explosion by scal-
ing down the parts of an object, a similar technique as presented by
Raab [17].

In psychological studies the effectiveness of design parameters
on the comprehension of an explosion’s layout was carried out for
the case of still renderings presenting an assembly plan [9]. Given

a 3d CAD model and a set of semantic information about the ge-
ometry (like its included groups of parts), applications are able to
follow the rules to automatically create static images of comprehen-
sible explosion diagrams [1].

The layout in real time explosion diagrams is usually closely
coupled with an interaction technique. For example, Sonnet et al.
[21] utilize a visual distortion technique bound to a 3D frustum
which is defined by the image plane and a movable 3D probe. In-
teracting with the probe enables the user to explode all parts out
of its line of sight. Brucker et al [5] present interactive tools to
divide volumetric data in a set of parts, which afterwards explode
apart by applying a set of forces to them. McGuffin et al. [16]
present a toolbox of interactive techniques, also applicable on vol-
umetric data, but instead of linearly moving the parts, they deform
the underlying data.

Besides explosion diagrams from 3D CAD data or volumetric
data sets, Li et al. [15] have presented tools to create interactive
explosions in image space. In a very recent publication [14], he
extended his system to create interactive explosion diagrams in 3D
where he uses a system similar to [1].

While already a number of systems exist to create interactive
explosion diagrams, none of them had to deal with real world in-
formation in their presentation space. Moreover, none of the pre-
sented systems is able to compute a task-dependent explosion lay-
out fully automatic, without any additional information than that
derived from the loaded CAD data.

3 RENDERING EXPLOSION DIAGRAMS

Explosion diagrams in AR consist of real, virtual and relocated real
information. To correctly compose an image out of all three types of
information, the rendering algorithm has to achieve three require-
ments. Firstly, it must be able to convincingly relocate real world
structures. Therefore, visual information has to be transferred from
its original to the target location after the explosion was applied.
Secondly, new imagery has to be generated to fill the original lo-
cations. Thirdly, the rendering algorithm has to correctly resolve
occlusions between all used data. In this section, we present algo-
rithms to relocate real world information, which fulfill these three
requirements and we also discuss the advantages and disadvantages
of these approaches.

3.1 Video-Textured Phantoms
Convincing AR renderings must resolve occlusions between vir-
tual and real world objects. To find out which fragments are visi-
ble, a common approach is phantom rendering [4] which uses the
depth values of real world objects which are computed by adding
the virtual counterpart, the phantom object, of real objects to the
scene description. Phantom objects are rendered invisibly, only to
the z-buffer, which enables the application to subsequently resolve
occlusion among real and virtual objects using the z-buffer, assum-
ing that the phantom objects are properly registered with their real
world counterparts. While phantoms themselves are rendered fully
transparent, the real world information from the video background
is kept where a phantom occludes all fragments from virtual ob-
jects.

Since simple phantom rendering does not take into account the
relocation of objects, it is not suitable for our goal of combining
real, virtual and relocated real objects. Specifically, information
from the video background in the color buffer must be transferred
to its new location when the phantom of a relocated object is ren-
dered. Thus, we extend the original idea of rendering transparent
counterparts of real world objects to video-textured phantoms (Fig-
ure 3(a), Figure 3(b)).

To texture a phantom object with video information, we calcu-
late the u,v coordinates for each fragment as if the video back-
ground was applied using projective texture mapping from the cam-

72

(a) (b) (c)

(d) (e) (f)

Figure 3: Distributing real world information. Exploded virtual phantom object (a) Transferred real world information to the phantom object (b)
Incomplete virtual scene and phantom rendering (c) Dual phantom rendering is used to remove void information (d) Phantoms with overlapping
2D footprints using the same video information (e) Synchronized dual phantom rendering to control the usage of video information (f)

era’s point of view. This is implemented by simply multiplying
each vertex of a phantom with the combined model-view-projection
(MVP) matrix representing the model (the phantom) before explo-
sion transformations are applied.

Using a vertex shader, this can be achieved in two ways. We can
either render the phantoms in their real world location and pass the
transformation to the new location to the shader, or we compute the
MVP matrix for each phantom beforehand and use it in the shader
while the phantom is rendered in its new location. Since the sec-
ond approach fits better into a scene graph framework, leveraging
its ability to cascade transformations, we choose it in our imple-
mentation. Consequently, we pass the matrix to transform a vertex
from object to world space before the explosion’s transformation is
applied. The necessary interpolation of the calculated u,v coordi-
nates is performed by passing the calculated values from the vertex
shader to the pixel shader. Note that interpolation of u.v coordinates
rather than color values is necessary to avoid artifacts.

Since all objects are rendered only once and no shading is used,
the computation of pixel colors only consists of a calculation of
texture coordinates and a lookup of the current video feed per frag-
ment. Therefore, rendering of video-textured phantoms has neg-
ligible overhead compared to simple phantom rendering and also
works if no relocation is applied.

3.2 Dual Phantom Rendering

With video-textured phantoms we can relocate real world objects to
another location in the image, thereby revealing the virtual objects
behind the relocated objects. This assumes that the complete area of
the relocated object is covered with virtual objects, which overrides
the part of the image originally covered by the relocated object.
However, frequently only a part of the uncovered area is occupied
by a virtual object. Without special measures, the remaining area
will still show the original video image (Figure 3(c)). We must
therefore extend the algorithm to invalidate any relocated real world
information in its original location, to be able to either create a cut-
out or to supplement incomplete hidden information (Figure 3(d)).

To identify invalid pixels, we add a second render pass in which

we project all fragments of a phantom onto their original real world
location. This generates a 2D mask, consisting of only those pixels
which will occur twice in a simple video-textured phantom render-
ing. This mask can then be used to either remove redundant real
world information, resulting in e.g. a black background where no
information is available, or the mask can be used to supplement
incomplete hidden structures (section 3.4). The algorithm, called
dual phantom rendering, can be described as follows:

1. Enable and initialize framebuffer-object
a) Enable rendering to target 1 (T1)
b) Clear depth buffer and render target (T1 is cleared with
100% transparent pixel)

2. Render all video-textured phantoms (as described in section
3.1) to T1

3. Render all virtual objects to T1

4. Switch rendering to target 2 (T2)

5. Render all phantoms in its original location to T2

6. Disable render-to-framebuffer-object and switch back to on-
screen rendering

7. Fill the color-buffer with the current video feed

8. Cut out invalid real world information using T2

9. Superimpose T1

Note that in step 5 of our algorithm we are only interested in a
binary 2D mask. This allows us to disable shading, thereby accel-
erating the rendering process. Furthermore, in cases where only a
simple cut-out (and no restoration) of invalid real world informa-
tion is desired, steps 7 and 8 can be combined by filling the color
buffer depending on the 2D mask of the invalid video pixel (T2).

The algorithm as outlined only marks those fragments as invalid
that will be visible in the final composition. This is controlled by the

73

values in the depth buffer after virtual objects- and video-textured
phantoms are rendered (after step 3). Not touching the depth buffer
before rendering the phantom objects (step 5) allows us to reject all
fragments which are hidden by either virtual or relocated real world
information. This is an appropriate approach for those cases where
a simple cut out of invalid information is desired. However, if the
restoration of hidden information is requested, a 2D mask repre-
senting the entire phantom object produces better results, because
it presents the 2D footprint of the entire object and not only those
of its visible portion. Such a 2D mask can be computed by clearing
the depth buffer before phantom rendering is initiated (before step
5).

Even though dual phantom rendering can be accelerated in many
cases, it still incurs a considerable performance overhead because
of the required second rendering pass. Therefore, this approach is
only recommended if required by the AR application.

3.3 Synchronized Dual Phantom Rendering

Labeling transferred video information in those places where a part
of an explosion has been originally located, enables us to remove
redundant information. However, in those cases where phantoms
overlap in screen space, we will still transfer the same real world
information to more than one object (Figure 3(e)). To completely
avoid duplicate usage of real world information, we have to fur-
ther restrict the transfer of information to only those fragments of
the phantom that are actually visible in its original location (Figure
3(f)).

Therefore, instead of directly texturing a relocated phantom, we
will first render the phantom at its original location, as in the pre-
vious approach. However, instead of simply marking the informa-
tion as invalid, it is labeled with the phantom’s object ID. By using
regular OpenGL depth tests we obtain an ID buffer of only visible
fragments. This ID buffer allows us to restrict the transfer of video
information to only those fragments which have been identified as
visible in their original location. The algorithm to synchronize the
transfer of real world information can be outlined as following:

1. Enable and initialize FBO
a) Enable rendering to target 1 (T1 = ID-Buffer)
b) Clear depth buffer and render target

2. Render IDs of all phantoms in its original location to ID-
Buffer (T1)

3. Disable FBO / Switch back to on-screen rendering / Clear
depth buffer

4. Fill color-buffer with the current video feed

5. Cut out invalid real world information using the ID-Buffer as
2D mask (phantom ids >0)

6. Render all video-textured phantoms. Use ID-Buffer (T1) to
control the usage of video information

7. Render all virtual objects

While Synchronized Dual Phantom Rendering requires, next to
a second render pass an ID buffer, we favor this approach over an
unsynchronized Dual Phantom Rendering only in scenarios where
the phantoms may overlap in screen space. Even though most of
the real world scenarios consist of a set of objects which overlap in
2D, some applications may focus on only a subset allowing the use
of the simpler unsynchronized dual phantom rendering.

3.4 Restoration
Since the video feed of an AR system delivers only information
about visible real world objects, their rearrangement may introduce
spots without any available information. Virtual objects are used
to fill out these empty places, but often the virtual model fails to
completely cover this area (Figure 4).

We therefore utilize a restoration technique to fill in empty areas
resulting from relocating real world objects. In our current imple-
mentation we identify the background information on the border of
a mask, resulting from a relocation of parts of an object. The empty
area is filled using the mean value of the all identified real world
background information (Figure 5).

This technique was chosen because it is simple and fast, and
leads to acceptable results for the applications we are currently con-
sidering. However, more advances techniques such as inpainting
[2] exist, but are left as future work.

Figure 4: Bad example of an explosion diagram in AR. No further
shading of the transferred real world information is used. Notice the
clutter of real and virtual information.

4 VISUALIZATION

While conventional illustrations can arrange all visual elements on
a uniform background, AR visualizations must deal with cluttered
real world images. A relocated object will therefore not only be
moved out of its natural context, but will be transported in a new,
potentially even worse context. The new context is usually not re-
lated to the exploded part at all and can potentially lead to difficul-
ties in understanding the explosion diagram. We therefore aim to
raise the ease of notice of the exploded parts, so that they success-
fully stand out from their background. We will first demonstrate
visualizations of single parts, before we discuss visual linking be-
tween associated parts in AR.

4.1 Part Visualization
Figure 4 shows an explosion diagram in a real world environment.
The image was rendered using the techniques discussed in the pre-
vious section. It clearly shows two problems of a visualization of
an explosion diagram in AR. Firstly, the exploded parts of an object
are hardly distinguishable from its surroundings in its new location.
Secondly, a combination of real and virtual imagery is rather con-
fusing if presented at the same object.

4.1.1 Visual Part Discrimination
To support the visual distinction between the parts of an explosion
diagram and its current video background, we highlight the bor-

74

(a) (b) (c)

(d) (e) (f)

Figure 5: Visualization techniques. White object boundaries used to discriminate objects from background (a) Grey outlines are almost invisible
(b) Halos and edge combination are better able to visually discriminate an object from its background. Notice, halos are only used over
background information while edges emphasis the parts of an object where they overlap other parts (c) Explosion diagram using dashed lines to
visually link its parts in VR (d) Explosion diagram using dashed lines in AR (e) Using motion blur in addition to visually link parts in AR (f)

der of the 2D footprint of the according part (Figure 5(a)). The
border is identified in 2D by applying an edge detector on an ID
buffer which is created during rendering the parts of the explosion
diagram.

However, while a uniformly-colored boundary adds a very strong
discriminator in situations where a high contrast between back-
ground and foreground information is given, the same techniques
fails if the boundary is of similar color as the information in the
background. Figure 5(a) and Figure 5(b) show the same borderline
in two different level of brightness. While one is easily noticeable,
the other can be hardly distinguished from the video background.

Consequently the discriminator has to be adapted to the current
situation. However, while in traditional illustrations the background
color is usually known, AR must deal with dynamically changing
information in the background of an explosion diagram. Dynam-
ically computing a suitable high contrast color for each object’s
boundary per frame creates disturbing temporal variations. It is
therefore better to render the borderline using multiple shades (Fig-
ure 5(c)). We therefore compute a halo, which softly changes the
brightness of an object’s borderline depending on its distance to it.
To not cover the explosion diagram itself with the wide spread halo,
we use it only on top of the video background, while the borderline
is used as visual discriminator over the parts of an explosion.

4.1.2 Visual Part Unification

The second problem of simple transformations of video texture ap-
pears when a mixture of real and virtual data appears on a single
part of an explosion (see Figure 4). While an explosion diagram re-
veals formerly hidden parts, not enough video information is avail-
able to cover the entire visualization. Therefore the video informa-
tion must be supplemented with virtual information, similar to the
requirements of the restoration of hidden information.

The chosen strategy to visually unify the occurring material de-
pends on the ratio of visible virtual to real world information. The
visible pixels are counted with an occlusion query before pixel
shading is applied. If the amount of available video pixel is too

small (empirically set to less than 50%), we will only use the vir-
tual color of an object (Figure 1, Figure 5). However, if enough
video information is present and only some virtually shaded frag-
ments may disturb the perception of an object, we will re-shade the
virtual information to visually fit to the used real world imagery.
We have implemented this re-shade operator similar to the restora-
tion of video background, by simply computing the mean value of
real world color information on the border to the virtual fragments
Note the change in color on the front left wheel in Figure 4 and
Figure 1.

4.2 Part Linking
To support the process of mentally reassembling an explosion di-
agram, traditional illustrations commonly use connection lines to
visually link the corresponding parts of the object. The drawings
often use rather thin and dashed (or dotted) line stylizes which must
use high contrast to be perceived well (Figure 5(d)). This is usually
achieved by using a homogeneously inked background and a con-
spicuous colorization of the connection lines, relative to the back-
ground color.

In contrast, real world environments are by no means uniform
and thin lines will be easily overlooked (Figure 5(e)). Therefore,
we add visual discriminators between the objects and the back-
ground imagery to emphasize the foreground objects. An example
is the haloed outlines presented in the last section.

To also avoid discontinuations, we embed the virtual informa-
tion within a uniformly-colored background. For this purpose we
do not only use dashed connection lines, but rely on motion blur ef-
fects of the exploded parts as they form a relatively uniform visual
discriminator (Figure 5(f)).

5 LAYOUT AND ANIMATION

The previously described visualizations support the mental recon-
struction of an exploded assembly by presenting visual links be-
tween its parts. To further enhance the user’s ability to reassemble a
model, the layout of the explosion has to be chosen appropriately to

75

the current task. For example, we can distinguish between layouts
for exploratory and x-ray vision tasks. When exploring an assem-
bly, the perception of its overall structure, as well as the context of
the parts is of interest and therefore, the assembly can be split into
single parts positioned relative to each other. Conversely, in x-ray
vision a focus element is revealed in its original context. This can
be described in an explosion diagram by removing entire groups of
parts until the focus element is visible as single part.

Furthermore, in psychological studies on the perception of as-
sembly plans it was found that symmetry is an important criterion
for creating well structured explosion layouts [9]. Parts are sym-
metric, if they are of the same type and are attached to the same
type of parent. For instance, the wheels of a car are symmetric and
are connected to either the same type of axis or even the same axis.
The layout should resemble such a symmetrical hierarchy.

Heise et. al. [9] also noticed that in a presentation of an assem-
bly plan, symmetric parts should be presented in the same so called
’action diagram’ which describes a single step out of the whole set
of instructions of the assembly plan. For example, the assembly of
all wheels should be presented in the same picture. We assign these
findings to our animation styles which explode symmetric parts, ei-
ther at the same point in time or in a row without interference of
other non-symmetric parts.

To be able to fully automatically compute a layout and its anima-
tion, we identified several parameters which influence the arrange-
ment of parts and the ordering of part removal. Firstly, an explo-
sion sequence has to be found containing information about which
parts have to be removed before other parts can safely be detached,
without colliding with any of the still assembled objects. Secondly,
the exploded parts have to be associated with those (parent) parts
which they move relative to. Thirdly, separation directions resem-
bling valid assembly directions as well as separation distances have
to be determined. Fourthly, to be able to explode a whole group
of symmetrical parts or to quickly reveal a focus element, layers
(groups of partitions) are introduced.

In the implemented framework each of these parameters can be
influenced independently by using a certain search strategy on the
used data structure. In the following, the calculation and the influ-
ence of the parameters on resulting layout as well as on the com-
puted animations are described.

5.1 Automatic Layout Computation
To automatically compute a layout we first have to find a valid par-
titioning of the object. However, to correctly disassemble an object
a number of different combinations usually exist which may result
in different layouts. Consequently, a strategy has to implemented
to identify a single partitioning. After having identified a partition-
ing of an object, we have to decide which parts of it will be moved
relative to others and which directions and distances are used to
separate the parts.

5.1.1 Partitioning

The range of all possible explosion sequences is determined by us-
ing a technique from the assembly planning domain, which follows
the approach of assembly-by-disassembly. Parts or groups of parts,
which are separable along their assembly direction, are identified
and removed until the whole product is disassembled [10]. All
potential sequences are collected in a single AND/OR graph which
represents the assembled model in its root node and all pairs of dis-
joint groups of parts (further referred to as partitions) as children.
By recursively splitting each partition into its set of pairs of valid
partitions, a graph is build which contains all possible partitionings.

Following the graph from its root node to its leaves disassem-
bles the model. However, it is very likely that an assembly can be
split into several different combinations of two partitions. There-
fore our system implements different strategies to choose a certain

path through the AND/OR graph. For instance, a strategy used to
create a symmetric layout removes the symmetric parts one after
another before considering other parts. To be able to compute the
layout, by using only geometrical information we identify symmet-
ric objects by their size and their position in the AND/OR graph.
Therefore, the size of the currently removed part is compared to all
possibilities which can follow this part. Each subsequent part hav-
ing a similar size to the current one is identified as being symmetric.
The algorithm concludes the set of symmetric parts after it finds a
part which is not of similar size to the current one.

A symmetric partitioning introduces a hierarchy of parts by re-
moving similar ones from the assembly in a row. However, other
search algorithms on an AND/OR graph can be found, leading to
other layouts. For example, a partitioning strategy to reveal a focus
object may always detect this pairs of partitions where one of them
contains the most parts excluding the focus element. By recursively
applying this strategy to the partition containing the focus part, a
layout is achieved which reveals the focus while all other parts are
being presented in a small amount of groups (Figure 6). Notice,
symmetric considerations are not directly taken into account when
revealing a focus part.

(a)

(b)

Figure 6: Different explosion layouts. Focused layout (a) Symmetric
layout (b)

5.1.2 Part Relations

After determining the partitioning of the assembly, a relation strat-
egy decides on which parts move relative to others by assigning
parent and child relations. The decision is made on two levels. On
partition-level, one partition of each partitioning is chosen to be the
static parent, while the second one is the child moving relative to

76

its parent. The decision is further refined on part-level. Out of the
set of parts being in contact between both partitions, corresponding
parent and child parts are selected, thus establishing a connection
between the partitions. To prevent children from being exploded
relative to several different parents, a simple restriction is intro-
duced: each partition must not contain more than one child.

This ensures that partitions already containing a child are always
selected as parent partitions. Both levels can be influenced by dif-
ferent criteria independent from each other, thereby creating differ-
ent layouts. A useful criterion can be the size of partitions and parts.
For instance, good results could be achieved, when first deciding to
move the partition smaller in size relative to the bigger one. Addi-
tionally, on part-level, the biggest parts were defined to be parent
and child parts. In combination with the previously described sym-
metrical partitioning style, symmetric layouts were generated.

For focused layouts, symmetrical considerations are not of up-
most importance. It is sufficient to ensure, that the focus element
stays static, while the partitions are moved away from the focus
element. A different approach is to move the focus element only
once, if it can be separated from the rest as single part. To be able
to clearly distinguish the focus from the rest, it can be exploded a
greater distance than the rest.

5.1.3 Directions and Distances

To avoid display clutter by abundance of explosion directions, we
restrict the overall number to only 6, which follow the object’s main
axis. Having computed information about groups of symmetric
parts or those that focus and context relation, we can further apply
this to set up distances and directions according to group member-
ships. For example, all objects of the same group can be set up
along the same main-axis and within the same distance to their par-
ents. Such a layout is able to visually underline the relationships
among the parts.

Besides group information, the size of a part (e.g. by measuring
its bounding box) may used to influence its distance of explosion,
leading to a layout where smaller parts, like screws are offset a
small distance from the parts they are attached to.

5.2 Computing Animation Styles

Since we are aiming for interactive presentations of explosion di-
agrams in AR, we are able to utilize animation styles to further
enhance the comprehension of our presentations. We have imple-
mented three different styles supporting the exploration and a focus
and context visualization of an exploded object (Figure 7).

Our system allows animations which remove all parts one after
another to clearly follow its assembly. To highlight symmetrical
groups we furthermore implemented the functionality to show an
animation of all parts of the same group at once. Nevertheless, since
an explosion diagram to reveal a focus object does not necessarily
require the perception of the whole assembly of the object, we have
implemented a style which removes all groups at once.

6 IMPLEMENTATION

The system discussed in this paper runs in interactive frame rates
using OpenGL and the AR framework Studierstube [19]. The
Studierstube framework is based on the scene graph library Coin3D
and it provides all the necessary components of an AR system such
as tracking or video acquisition.

To be able to create a universal system, which works without
manual preparation, we automatically compute the layout of an ex-
plosion by only using the geometrical information and a selection
of parameters to configure the search algorithms (described in sec-
tion 5). To easily create realistic animations we make also use of
the physics engine ODE which is wrapped in our scene graph by
using the IPSA [3] system.

Figure 7: Different animation styles. Single part explosion (left col-
umn) Grouped explosion (right column top) All in one animation (right
column bottom last image)

77

While the rendering of an explosion diagram in AR, including
switching between different layouts or animation styles has to run
in real time, the data structures are computed in a pre-processing
step which last a couple of minutes depending on the number of
parts of the used model. For the Lego-model shown throughout our
examples it took about seven minutes and approximately 180MB of
memory to compute all necessary data.

The visualizations where implemented using a deferred shading
[7] environment, which consists of a set of scene graphs nodes to
control which content is shaded by using which shader. Conse-
quently, the edges are detected in image space, the applied motion
blur implements the approach of Green [8] and the halo operator
follows the proposed implementation of Brucker [6]. All visual-
ization effects are implemented on the GPU using the programming
language GLSL. More detailed information about the shading en-
vironment can be found in [12].

7 CONCLUSION

Explosion diagrams provide a powerful tool to visually commu-
nicate spatial relationships between their parts. They have been
successfully applied in traditional illustrations and in scientific vi-
sualizations. We showed in this paper that they are able to be an es-
sential visualization technique for AR applications, if care is taken
in the integration.

We have shown different aspects that have to be considered when
embedding an explosion diagram in a real world environment. The
proposed algorithms transfer video information considering all ap-
pearing occlusions between real, relocated real and virtual objects.
The algorithms can be adjusted in computational complexity de-
pending on the needs of the AR application. To deal with defi-
ciencies arising from relocating visual information, we have also
demonstrated visualization techniques to enhance the comprehen-
sion of an AR explosion diagram. Further on, we showed a fully
automatic, task dependent computation of an explosion’s layout and
its animation.

Our implementation is build on top of the component-oriented
framework Studierstube [19]. This framework together with the
fully automatic computation of layout and animations makes it pos-
sible to present AR explosion diagrams without any modifications
of the underlying models being shown.

Even though this paper addresses the most important aspects for
a comprehensible visualization of AR explosion diagrams, several
refinements are conceivable. For example, more advanced inpaint-
ing algorithms can be used to create visually better results to com-
pensate for lacking information after relocating real world objects.
Another area of improvement are application dependent interac-
tion techniques to modify the layout or the way its animation is
presented in order to further enhance the understanding of the AR
scene. Furthermore, a complete evaluation of the effectiveness of
the computed layouts and their visualizations in AR is considered
as future work on a series of different objects in several different
real world environments. In addition, an evaluation of the influence
of erroneous tracking data to the comprehension of an explosion
diagram in AR has to be carried out to study the practical value of
our work.

ACKNOWLEDGEMENTS

This work was sponsored in part by the Austrian Science Fund FWF
under contract Y193 and the Christian Doppler Labor for Handheld
Augmented Reality. We would like to thank B. Kainz for useful
discussions and all reviewers for their comments and suggestions.

REFERENCES

[1] M. Agrawala, D. Phan, J. Heiser, J. Haymaker, J. Klingner, P. Han-
rahan, and B. Tversky. Designing effective step-by-step assembly in-
structions. ACM Trans. Graph., 22(3):828–837, 2003.

[2] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester. Image inpaint-
ing. In SIGGRAPH ’00: Proceedings of the 27th annual conference on
Computer graphics and interactive techniques, pages 417–424, New
York, NY, USA, 2000. ACM Press/Addison-Wesley Publishing Co.

[3] A. Bierbaum, T. Asfour, and R. Dillmann. IPSA - Inventor Physical
Modelling API for Dynamics Simulation in Manipulation. In Interna-
tional Conference on Intelligent Robots and Systems, September 2008.

[4] D. E. Breen, R. T. Whitaker, E. Rose, and M. Tuceryan. Interac-
tive occlusion and automatic object placement for augmented reality.
Computer Graphics Forum, 15(3):11–22, 1996.

[5] S. Bruckner and M. E. Gröller. Exploded Views for Volume
Data. IEEE Transactions on Visualization and Computer Graphics,
12(5):1077–1084, 9 2006.

[6] S. Bruckner and M. E. Gröller. Enhancing depth-perception with flex-
ible volumetric halos. IEEE Transactions on Visualization and Com-
puter Graphics (accepted for publication), 13(6): to be presented at
IEEE Visualization 2007.

[7] M. Deering, S. Winner, B. Schediwy, C. Duffy, and N. Hunt. The
triangle processor and normal vector shader: a vlsi system for high
performance graphics. In SIGGRAPH, pages 21–30, 1988.

[8] S. Green. Stupid OpenGL Shader Tricks. In Game Development Con-
ference 2003, 2003.

[9] J. Heiser, D. Phan, M. Agrawala, B. Tversky, and P. Hanrahan. Identi-
fication and Validation of Cognitive Design Principles for Automated
Generation of Assembly Instructions. In AVI ’04: Proceedings of the
working conference on Advanced visual interfaces, pages 311–319,
New York, NY, USA, 2004. ACM Press.

[10] L. Homem de Mello and A. Sanderson. A Correct and Complete Al-
gorithm for the Generation of Mechanical Assembly Sequences. In
IEEE Transaction on Robotics and Automation, volume 7, pages 228–
240, April 1991.

[11] D. Kalkofen, E. Mendez, and D. Schmalstieg. Interactive focus and
context visualization for augmented reality. In Proceedings of the 6th
IEEE and ACM International Symposium on Mixed and Augmented
Reality (ISMAR), pages 191–200, Nov. 2007.

[12] D. Kalkofen, E. Mendez, and D. Schmalstieg. Comprehensible visu-
alization for augmented reality. IEEE Transactions on Visualization
and Computer Graphics, 99(1), 5555.

[13] S. Kim, H. Hagh-Shenas, and V. Interrante. Conveying three-
dimensional shape with texture. In APGV ’04: Proceedings of the
1st Symposium on Applied perception in graphics and visualization,
pages 119–122, New York, NY, USA, 2004. ACM.

[14] W. Li, M. Agrawala, B. Curless, and D. Salesin. Automated Genera-
tion of Interactive 3D Exploded View Diagrams. In SIGGRAPH 2008,
August 2008.

[15] W. Li, M. Agrawala, and D. Salesin. Interactive Image-Based Ex-
ploded View Diagrams. In Graphics Interface, pages 203–212, 2004.

[16] M. McGuffin, L. Tancau, and R. Balakrishnan. Using Deformations
for Browsing Volumetric Data. In Visualization, 2003. VIS 2003.
IEEE, pages 401–408, 19-24 Oct. 2003.

[17] A. Raab. Techniken zur Interaktion mit und Visualisierung von ge-
ometrischen Modellen. PhD thesis, Otto-von-Guericke Universit-
Magdeburg, Germany, 1998. In German.

[18] F. Ritter, B. Preim, O. Deussen, and T. Strothotte. Using a 3D Puzzle
as a Metaphor for Learning Spatial Relations. In Graphics Interface,
pages 171–178. Morgan Kaufmann Publishers, 2000.

[19] D. Schmalstieg, A. Fuhrmann, G. Hesina, Z. Szalavári, L. M.
Encarnaçäo, M. Gervautz, and W. Purgathofer. The studierstube
augmented reality project. Presence: Teleoper. Virtual Environ.,
11(1):33–54, 2002.

[20] T. Sielhorst, C. Bichleier, S. Heining, and N. Navab. Depth Percep-
tion A Major Issue in Medical AR: Evaluation Study by Twenty Sur-
geons. In Medical Image Computing and Computer-Assisted Inter-
vention, pages 364–372, 2006.

[21] H. Sonnet, S. Carpendale, and T. Strothotte. Integrating Expanding
Annotations with a 3D Explosion Probe. In Advanced Visual Inter-
faces, pages 63–70, New York, NY, USA, 2004. ACM Press.

78

